The Ford-Fulkerson algorithm to find the
Maximum Flow in a Flow network

Author: Abdullah Al Mamun Oronno
12" Batch, CSEDU.

Revised by:

Introduction

The maximum flow problem is to find a feasible flalwough a single-
source, single-sink flow network that is maximunmeTsimplest form that
the statement could take would be something albegdibhes of: "A list of
pipes is given, with different flow-capacities. Beepipes are connected at
their endpoints. What is the maximum amount of wé#tat you can route
from a given starting point to a given ending p®inbr equivalently "A
company owns a factory located in city X where jpicid are manufactured
that need to be transported to the distributiortarein city Y. You are given
the one-way roads that connect pairs of citiesha tountry, and the
maximum number of trucks that can drive along eswdd. What is the
maximum number of trucks that the company can gentthe distribution
center?"

Given a directed graph G = (V, E) with integer adapeas, c : E, and a source
node s and a sink node t in V. Find a flow functmmthe arcs subject to
‘conservation constraints’ and ‘capacity constigintThe conservation
constraint for a node is that the sum of the flowirecoming arcs is equal to
the sum on outgoing arcs for all nodes other timnsource and the sink.
The capacity constraint for an arc is that the flswno larger than the
capacity. One wishes to maximize the flow out @& $slource (into the sink).

A flow network G = (V, E) is a directed graph in whieach edge (u,\}ﬂ E
has a nonnegative capacity c(uixvd. A flow in G is a real-valued function
f: V x V — R that satisfies the following three properties:

Capacity constraint: Forall i, v € V, we require f (i, v) < c(u. v).
Skew symmetry: Forall u,v € V, werequire f(u.v) = —f (v, u).
Flow conservation: Forall u € V — {5, 1}, we require

Z flu.vf="0;

.
pel

The quantity f(u, v), which can be positive, zero, or negative, is
called the flow from vertex i to vertex v.

Let consider the following Graph.

Edmonton Saskatoon

Winnipeg

Calgary Regina
Lo } L

Here, Each edge (u,v) has a nonnegative capacity)c{Ne have a source s,

and a sink t.
A flow in the network is an integer-valued functibalefined on the edges

such thaf(u,v) <= c(u,v).

Fig: An example of a flow network with a maximunowl. The source is s,
and the sink t. The numbers denote flow and capavie get total the

amount 19 as the maximum flow.

Ford-Fulkerson method

» The Ford-Fulkerson method computes the maximumw flo a flow
network. It was published in 1955 by L. R. Ford,aird D. R. Fulkerson.

» We can call it a “method” rather than an “algamth because it
encompasses several implementations with differumning times. The
Ford-Fulkerson method depends on three importadsidhat transcend
the method and are relevant to many flow algorithensl problems:
residual networ ks, augmenting paths, andcuts.

Residual Networks

Suppose that we have a flow network G = (V, E) wibarce s and sink t.
Let f be a flow in G, and consider a pair of vedicgve V. The amount of
additional flow we can push from u to v before exiieg the capacity
c(u,v) is theresidual capacity of (u,v), given by:

¢ (u,v) = c(u,v) - (u,v)

For example, if c(u,v) = 16 and f (u,v) = 11, thea can increase f (u,v) by
¢ (u,v) = 5 units before we exceed the capacity waimg on edge (u,v).

Fig: Residual network for the above flow netwakowing residual
capacities.

Augmenting Path

Given a flow network G = (V, E) and a flow f , an manting patlp is a
simple path from s to t in the residual netwokk G

The red shaded path in the figure shows an augn@epéth in a residual
network.

There is available capacity along the paths ($)a(s,a,b,d,t) and
(s,a,b,d,c,t), which are then the augmenting paths.

The residual capacity of the first path is;
min(C(s,a) -f(s,a),C(a,c) -f(a,c),C(c.t) -T(c,t))
=min(5-3,3-2,2-1)
=min(2, 1, 1)
=1

Cut:

In graph theory, a cut is a partition of the vertiof a graph into two sets.
More formally, let G(V, E) denote a graph. A cuaipartition of the vertices
V into two sets S and T. Any edge (us&/E withue Sandve T (orue T

and ve S, in case of a directed graph) is said to be mrggke cut and is a

cut edge.

In network flow, the size of a cut is defined tothe sum of weights of the
edges crossing the cut from the source side taithkeside (but not the ones

that go the other way).

Here we can divide the graph in the following panti so that:

S

(S, W, Vo) €S
(V3, Vg,) ET

The net flow through a cut (S,T) is define as:
f(ST)=>f(uyv)-> f(v,u) ,where €S and &T

The Capacity of Cut(S,T) is define as:
c(S,T)=> c(u,v) ,whereue Sand\e T

Naive Algorithm

FORD-FULKERSON-METHOD(G, s, t)

1 initialize flowf to O

2 while there exists an augmenting path
3 do augment flowalongp

4 returnf

The basic idea of Ford-Fulkerson method is to fejaeatedly augmented
path from flow network until there exists no path.

When we have an edge# v and have minimum flow f(u,v), the residual
capacity is defined as:

¢ (u,v) =c(u,v) - (u,v)

For every flow, we define a residual capacity ipogite direction (v— u)
as:

¢ (v,u) =c(v,u) — f(u,v)
=> G (v,u) = c(v,u) + f (v,u) (as f(u,v)= - f(v,u) from screw
symmetry property)

The following example with figure will clear all:

Let, we want to find the maximum flow on the follmg graph:

1% Step: the augmenting pa—Vv1—v3—Vv2—Vv4—t and the min-Cost
from all edges in path i®in(16,12,9,14,4)=4, thus current max-flow = 4.

Flow Network, Residual Network

2" Step: the augmenting path—Vv1—Vv2—v4—v3—t from the residual
network and have the max-flow =4+ 7 =11

L1/14

34 Step: the augmenting pati—Vv2—Vv1—Vv3—t from the residual
network and have the max-flow = 11+ 8 = 19

4™ Step: the augmenting pagi—Vv2— v3—t from the residual network
and have the max-flow =19 + 4 = 23

This is the last situation where we can stop bex#usre is no augmenting
path in the following residual network:

So we get 23 as the maximum flow for this flow netiv

The basic Ford-Fulkerson algorithm:
FORD-FULKERSON(G, s, t)
[for eachedge (1.v) € E[G]
2 do flu,v] <0
3 flv,u] <0
4 while there exists a path p from s to ¢ in the residual network G ¢
5 do cy(p) < min{cs(u,v) : (1, v) is in p}
6 for each edge (1, v) in p
7 do flu,v] < flu,vl+cr(p)
8 flv, u] < —flu, v]

We can find path from source(s) to sink(t) by angwn algorithm like,
DFS, BFS etc.

A simple code using DFS for max-flow can be asfoh:

I/l Code of Max-Flow | Using DFS

#define MIN(a,b) ((a<b)?a:b)
#define INF 2147483647

int flow[101][101],prev[101],flowfound,no_of Node;
void DFS(int source, int destination, int c)

{
inti;
if(source==destination)
flowfound=c;
if(flowfound!=0)
return;
for(i=1;i<=no_of Node;i++)
if(prev[i]==0 && flow[source][i]'=0)
{
prevli]=source;
c=MIN(flow[source][i],c); /l#define MIN(a,b) ((a<b)?a:b)
DFS(i, destination, c);
}
}
}
int ford_fulkerson_using_DFS(int source, int destion)
{
memset(prev,0,(no_of Node+1)*sizeof(prev|[0]));
flowfound=0;
prev[source]=-1;
DFS(source, destination, INF); [I#define INF 2147483647
return flowfound,
}
int maxflow(int source, int destination)
{
int f,i, maxflow=0;
while((f=ford_fulkerson_using_DFS(source, deaiion)) !=0)
{
i=destination;
while(prev[i]'=-1)
{
flow[preV[i]][i] -=f;
flow[i][prev[i]] +=f;
i=preVl[i];
maxflow+=f;
}
return maxflow;
}
int main()

{

[lfreopen(in.txt","rt" stdin);

int source,destination,no_of Edge,i,j,a,b,c;
scanf("%d",&no_of Node);
scanf("%d %d %d",&source,&destination,&no_of E}jge

for(i=1;i<=no_of Node;i++)
for(j=1;j<=no_of_Node;j++)
flow[i][j]=0;

for(i=1;i<=no_of_Edge;i++)

{
scanf("%d %d %d",&a,&b,&c);
flow[a][b]+=c;
flow[b][a]+=c;

}

printf("Maximum Flow is : %d\n",maxflow(source gténation));
return 0;

}

The running time of FORD-FULKERSON depends on hbg&vdugmenting
path p is determined. If it is chosen poorly, tlgoathm might not even
terminate: the value of the flow will increase walilccessive augmentations,
but it need not even converge to the maximum flayue. See the example
in following graph:

Lst Step: totalFlow=1 2nd Step: totalFlow =1+1 =2

From this graph we can continue as do“stép and next to”?step. Thus
we will find 2,000,000 paths(!) and total flow w#l 2000000.

But if we simply choose the path-u—t in 1% step and—v—t in 2" step,
we get the maximum flow by 2 paths only!

Better I mplementation:

The bound on FORD-FULKERSON can be improved if melement the
computation of the augmenting path p with a bredidsh search, that is, if
the augmenting path is a shortest path from srtaéhte residual network,
where each edge has unit distance (weight). WelwlFord-Fulkerson
method so implemented the Edmonds-Karp algorithims &lgorithm runs
in polynomial time.

Code using BFS:

int bfs(int source,int destination)
{
int u,v;
gueue<i nt >Q
menset (vi sited, 0, si zeof (visited));
vi si ted[sour ce] =1;
pr[source] =0;
Q push(source);
while(!Q empty())
{

u=Q front();

Q pop() ;
i f(u==destination) return 1;
for(v=1; v<=V, v++)

if((!visited[v]) && (capacity[u][v]-flow u][v]=>0))

Q push(v);
prv]=u;
vi si ted[v] =1;
}
}
}
return O;

int ford_ful kerson(int source,int destination)

{
int u,increnment, v, max_fl ow=0;
whi | e(bf s(source, destination))

{
i ncrenent =i nf;
for(v=destination; pr[v]>0;v=pr[v])
{
u=pr[v];
i ncrement =mi n(increnent, capacity[u][v]-flowu][V]);
}
for(v=destination;pr[v]>0;v=pr[v])
{
u=pr[v];
flow u] [v] +=i ncrenent;
flow v][u]-=increnent;
}
max_f | ow+=i ncrenent ;
}

return max_fl ow

Another Approach:

/I this will be using priority-first search (PF3yef: topcoder tutorial

