Threading in C#

The mere mention of multithreading can strike fear in the hearts of some programmers. For oth-
ers, it fires them up for a good challenge. No matter how you react to the subject, multithreading is
an area riddled with mine fields. Unless you show due diligence, a threading bug can jump up and
bite you—and bite you in a place where you cannot seem to find it easily. Threading bugs can be
among the hardest to find, because they are asynchronous. Threading bugs are hard enough to find
on a single-processor machine, but add another processor, and the bugs can become even harder to
find. In fact, some threading bugs don’t even rear their ugly head until you run your application on a
multiprocessor machine, since that’s the only way to get true concurrent multithreading. For this
reason, I always advise anyone developing a multithreaded application to test, and test often, on a
multiprocessor machine. Otherwise, you run the risk of sending your product out the door with
lurking threading bugs.

Iremember it as if it were a meal ago: At a former employer of mine, we were soon to ship our
gold master to the manufacturer and have hundreds of thousands of disks made, and then someone
finally happened to test the application on a multiprocessor machine in the lab. Needless to say, a
great lesson was learned across the entire team, and a nasty bug was snipped before it got out the
door.

Threading in C# and .NET

Even though threading environments have presented many challenges and hurdles over the years,
and will continue to do so, the CLR and the .NET base class library mitigate many of these risks and
provide a clean model to build upon. It’s still true that the greatest challenge of creating high-quality
threaded code is that of synchronization. The .NET Framework makes it easier than ever to create
new threads or utilize a system-managed pool of threads, and it provides intuitive objects that help
you synchronize those threads with each other. However, it’s still your duty to make sure you use
those objects properly.

Managed threads are virtual threads in the sense that they don't map one-to-one to OS threads.
Managed threads do actually run concurrently, but it would be erroneous to assume that the OS
thread currently running a particular managed thread’s code will only run managed code for that
thread only. In fact, an OS thread could run managed code for multiple managed threads in multi-
ple application domains in the current implementation of the CLR. The bottom line is, don't make
any assumptions about the correlation between OS threads and managed threads. If you burrow
down to the OS thread using the P/Invoke layer to make direct Win32 calls, be sure that you only use
that information for debugging purposes and base no program logic on it at all. Otherwise, you'll
end up with something that may break as soon as you run it on another CLR implementation.

It would be erroneous to conclude that multithreaded programming is just about creating extra
threads to do something that can take a long time to do. Sure, that’s part of the puzzle. And when

317

318

CHAPTER 12 I THREADING IN C#

you create a desktop application, you definitely want to use a threading technique to ensure that
the Ul stays responsive during a long computational operation, because we all know what impa-
tient users tend to do when desktop applications become unresponsive: They kill them! But it’s
important to realize that there is much more to the threading puzzle than creating an extra thread
to run some random code. That task is actually quite easy in the C# environment, so let’s take a look
and see how easy it really is.

Starting Threads
AsIsaid, creating a thread is very simple. Take a look at the following example to see what I mean:

using System;
using System.Threading;

public class EntryPoint
{

private static void ThreadFunc() {
Console.WritelLine("Hello from new thread {o}!",
Thread.CurrentThread.GetHashCode());
}

static void Main() {
// Create the new thread.
Thread newThread =
new Thread(new ThreadStart(EntryPoint.ThreadFunc));

Console.WritelLine("Main Thread is {o0}",
Thread.CurrentThread.GetHashCode());
Console.Writeline("Starting new thread...");

// Start the new thread.
newThread. Start();

// Wait for new thread to finish.
newThread.Join();

Console.WritelLine("New thread has finished");

All you have to do is create a new System. Thread object and pass an instance of the ThreadStart
delegate as the parameter to the constructor. The ThreadStart delegate references a method that
takes no parameters and returns no parameters. In the previous example, I chose to use the static
ThreadFunc method as the start of execution for the new thread. I could have just as easily chosen to
use any other method visible to the code creating the thread, as long as it neither accepted nor
returned parameters. Notice that the code also outputs the hash code from the thread to demon-
strate how you identify threads in the managed world. In the unmanaged C++ world, you would use
the thread ID obtained via the Win32 API. In the managed world, you instead use the value returned
by GetHashCode. As long as this thread is alive, it is guaranteed never to collide with any other thread
in any application domain of this process. The thread hash code is not globally unique on the entire
system. Also, you can see how you can get a reference to the current thread by accessing the static
property Thread.CurrentThread. Finally, notice the call to the Join method on the newThread object.
In native Win32 code, you normally wait for a thread to finish by waiting on its handle. When the
thread finishes running, the operating system signals its handle and the wait completes. The

CHAPTER 12 " THREADING IN C#

Thread.Join method encapsulates this functionality. In this case, the code waits forever for the
thread to finish. Thread. Join also provides a few overloads that allow you to specify a timeout
period on the wait.

In the managed environment, the System. Thread class nicely encapsulates all of the operations
that you may perform on a thread. If you have some sort of state data that you must transmit to the
new thread so that it has that data available when it starts execution, you can simply create a helper
object and initialize the ThreadStart delegate to point to an instance method on that object. Yet
again, you solve another problem by introducing another level of indirection in the form of a class.
Suppose you have a system where you fill multiple queues with tasks, and then at some point you
want to create a new thread to process the items in a specific queue that you pass into it. The fol-
lowing code demonstrates one way you can achieve such a goal:
using System;
using System.Threading;
using System.Collections;

public class QueueProcessor

{
public QueueProcessor(Queue theQueue) {
this.theQueue = theQueue;
theThread = new Thread(new ThreadStart(this.ThreadFunc));

}
private Queue theQueue;

private Thread theThread;
public Thread TheThread {

get {
return theThread;
}

}

public void BeginProcessData() {
theThread.Start();
}

public void EndProcessData() {
theThread.Join();
}

private void ThreadFunc() {
// ... drain theQueue here.
}

}

public class EntryPoint
{

static void Main() {
Queue queuel = new Queue();
Queue queue2 = new Queue();

// ... operations to fill the queues with data.

// Process each queue in a separate thread.
QueueProcessor procl = new QueueProcessor(queuel);

319

320

CHAPTER 12 I THREADING IN C#

procl.BeginProcessData();

QueueProcessor proc2 = new QueueProcessor(queue2);
proc2.BeginProcessData();

// ... do some other work in the meantime.

// Wait for the work to finish.
proci.EndProcessData();
proc2.EndProcessData();

There are some potential synchronization problems here if anyone were to access the queues
after the new threads begin their work. But I'll save synchronization issues until later in the chapter.
This solution is a clean one and also loosely follows the typical pattern of asynchronous processing
in the .NET Framework. The class adding the extra level of indirection is the QueueProcessor class. It
cleanly encapsulates the worker thread and exposes a lightweight interface to get the work done. In
this example, the main thread waits for the work to finish by calling EndProcessData. That method
merely calls Join on the encapsulated thread. However, had you required some sort of status
regarding the completion of the work, the EndProcessData method could have returned it to you.

When you create a separate thread, it is subject to the rules of the thread scheduler on the sys-
tem, just like any other thread. However, sometimes you need to create threads that carry a little
more or a little less weight when the scheduler algorithm is deciding which thread to execute next.
You can control the priority of a managed thread via the Thread.Priority property. You can adjust
this value as necessary during execution of the thread. It’s actually a rare occurrence that you'll need
to adjust this value. All threads start out with the priority of Normal from the ThreadPriority enu-
meration.

The IOU Pattern and Asynchronous Method Calls

In the section titled “Asynchronous Method Calls,” where I discuss asynchronous I/0 and thread
pools, you'll see that the BeginProcessData/EndProcessData is a common pattern of asynchronous
processing used throughout the .NET Framework. The BeginMethod/EndMethod pattern of asynchro-
nous programming in the .NET Framework is similar to the IOU pattern described by Allan
Vermeulen in his article, “An Asynchronous Design Pattern” (Dr. Dobb’s Journal, June 1996). In that
pattern, a function is called to start the asynchronous operation and in return, the caller is given an
“I owe you” (I0U) object. Later, the caller can use that object to retrieve the result of the asynchro-
nous operation. The beauty of this pattern is that it completely decouples the caller wanting to get
the asynchronous work done from the mechanism used to actually do the work. This pattern is used
extensively in the .NET Framework, and I suggest that you employ it for asynchronous method calls,
as it will give your clients a familiar look and feel.

States of a Thread

The states of a managed thread are well defined by the runtime. Although the state transitions may
seem confusing at times, they aren't much more confusing than the state transitions of an OS
thread. There are other considerations to address in the managed world, so the allowable states and
state transitions are naturally more complex. Figure 12-1 shows a state diagram for managed
threads.

CHAPTER 12 " THREADING IN C#

Thread.Resume
Called by other thread

Suspended

Thread.Start

Thread.Interrupt
Called from another
thread

After reaching
safe point in

Thread.Suspend managed code

Wait satisfied

SuspendRequested
(Running)

Thread.Sleep

Thread.Join

WaitSleepJoin

Monitor.Wait

Thread.Abort Thread.ResetAbort Thread function exits
Called from another Called by thread that called either gracefully or by
thread Thread.Abort failing to

handle exception

AbortRequested

(Running)

Finished
ThreadAbortException
handling

Finished/
Aborted

Figure 12-1. State diagram of managed threads

321

322

CHAPTER 12 I THREADING IN C#

The states in the state diagram are based upon the states defined by the CLR for managed
threads, as defined in the ThreadState enumeration. Every managed thread starts life in the
Unstarted state. As soon as you call Start on the new thread, it enters the Running state. OS threads
that enter the managed runtime start immediately in the Running state, thus bypassing the
Unstarted state. Notice that there is no way to get back to the Unstarted state. The dominant state in
the state diagram is the Running state. This is the state of the thread when it is executing code nor-
mally, including any exception handling and execution of any finally blocks. If the main thread
method, passed in via an instance of the ThreadStart delegate during thread creation, finishes nor-
mally, then the thread enters the Finished state, as shown in Figure 12-1. Once in this state, the
thread is completely dead and will never wake up again. If all of the foreground threads in your
process enter the Finished state, the process will exit normally.

The three states mentioned previously cover the basics of managed thread state transition,
assuming you have a thread that simply executes some code and exits. Once you start to add syn-
chronization constructs in the execution path or wish to control the state of the thread, whether
from another thread or the current thread, things become more complicated.

For example, suppose you're writing code for a new thread and you want to put it to sleep for a
while. You would call Thread. Sleep and provide it a timeout, such as how many milliseconds to
sleep. This is similar to how you put an OS thread to sleep. When you call Sleep, the thread enters
the WaitSleepJoin state, where its execution is suspended for the duration of the timeout. Once the
sleep expires, the thread reenters the running state.

Synchronization operations can also put the thread into the WaitSleepJoin state. As may be
obvious by the name of the state, calling Thread. Join on another thread in order to wait for it to fin-
ish puts the calling thread into the WaitSleepJoin state. Calling Monitor.Wait also enters the
WaitSleepJoin state. Now you know the three factors that went into naming the state in the first
place. You can use other synchronization methods with a thread, and I'll cover those later in the
chapter in the “Synchronizing Work Between Threads” section. As before, once the thread’s wait
requirements have been met, it reenters the Running state and continues execution normally.

It’s important to note that any time the thread is sitting in the WaitSleepJoin state, it can be
forcefully pushed back into the Running state when another thread calls Thread. Interrupt on the
waiting thread. Win32 programmers will recognize that this behavior is similar to alertable wait
states in the operating system. Beware that when a thread calls Thread. Interrupt on another
thread, the interrupted thread receives a thrown ThreadInterruptedException. So, even though the
interrupted thread reenters the Running state, it won't stay there for long unless an appropriate
exception-handling frame is in place. Otherwise, the thread will soon enter the Finished state once
the exception boils its way up to the top of the thread’s stack unhandled.

Another way that the thread state can transition out of the WaitSleepJoin state is when another
thread calls Thread.Abort on the current thread. Technically, a thread could call Abort on itself.
However, I consider that a rare execution flow and have not shown it in Figure 12-1. Once
Thread.Abort is called, the thread enters the AbortRequested state. This state is actually a form of a
running state, since the thread is thrown a ThreadAbortException and must handle the exception.
However, as I explain later on, the managed thread treats this exception in a special way, such that
the next state will be the final Aborted state unless the thread that called Thread.Abort manages to
call Thread.ResetAbort before that happens. Incidentally, there’s nothing to stop the thread that is
aborting from calling ResetAbort. However, you must refrain from doing such a thing since it could
create some ill behavior. For example, if a foreground thread can never be aborted because it keeps
resetting the abort, the process will never exit.

Note Beginning in .NET 2.0, the host has the ability to forcefully kill threads during application domain shut-
down by using what'’s called a rude thread abort. In such a situation, it is impossible for the thread to keep itself
alive by using Thread.ResetAbort.

CHAPTER 12 " THREADING IN C#

Finally, a running thread enters the SuspendRequested state after calling Thread. Suspend on
itself, or after another thread calls Suspend on it. Very shortly after that, the thread automatically
enters the Suspended state. Once a thread enters the SuspendRequested state, there is no way to keep
it from eventually entering the Suspended state. Later on, in the section titled “Halting Threads and
Waking Sleeping Threads,” I discuss why this intermediate state is needed when a thread is sus-
pended. But for now, it’s important to realize that the SuspendRequested state is a form of a running
state in the sense that it is still executing managed code.

That wraps up the big picture regarding managed-thread state transitions. Be sure to refer to
Figure 12-1 throughout the rest of the chapter when reading about topics that affect the state of the
thread.

Terminating Threads

When you call Thread.Abort, the thread in question eventually receives a ThreadAbortException. So,
naturally, in order to handle this situation gracefully, you must process the ThreadAbortException if
there is anything specific you must do when the thread is being aborted. There is also an overload of
Abort that accepts an arbitrary object reference, which is then encapsulated in the subsequent
ThreadAbortException. This allows the code that is aborting the thread to pass some sort of context
information to the ThreadAbortException handler, such as a reason why Abort was called in the first
place.

The CLR doesn't deliver a ThreadAbortException unless the thread is running within the man-
aged context. If your thread has called out to a native function via the P/Invoke layer, and that
function takes a long time to complete, then a thread abort on that thread is pended until execution
returns to managed space.

Note In .NET 2.0 and later, if a finally block is executing, delivery of a ThreadAbortException is pended
until execution leaves the finally block. In .NET 1.x, the abort exception is delivered anyway.

Calling Abort on a thread doesn'’t forcefully terminate the thread, so if you need to wait until the
thread is truly finished executing, you must call Join on that thread to wait until all of the code in
the ThreadAbortException exception handler is finished. During such a wait, it is wise to wait with a
timeout so that you don’t get stuck waiting forever for a thread to finish cleaning up after itself. Even
though the code in the exception handler should follow other exception-handler coding guidelines,
it’s still possible for the handler to take a long time or, gasp, forever to complete its work. Let’s take a
look at a ThreadAbortException handler and see how this works:
using System;
using System.Threading;

public class EntryPoint
{
private static void ThreadFunc() {
ulong counter = 0;
while(true) {
try {
Console.WriteLine("{0}", counter++);

catch(ThreadAbortException) {
// Attempt to swallow the exception and continue.
Console.WritelLine("Abort!");

323

324 CHAPTER 12 I THREADING IN C#

}

static void Main() {
Thread newThread =
new Thread(new ThreadStart(EntryPoint.ThreadFunc));
newThread.Start();
Thread.Sleep(2000);

// Abort the thread.
newThread.Abort();

// Wait for thread to finish.
newThread.Join();

From a cursory glance at the code, it would appear that the call to Join on the newThread
instance will block forever. However, that’s not what happens. It would appear that since the
ThreadAbortException is handled within the loop of the thread function, the exception will be swal-
lowed and the loop will continue no matter how many times the main thread attempts to abort the
thread. As it turns out, the ThreadAbortException thrown via the Thread.Abort method is special.
When your thread finishes processing the abort exception, the runtime implicitly rethrows it at the
end of your exception handler. It’s the same as if you had rethrown the exception yourself. There-
fore, any outer exception handlers or finally blocks will still execute normally. In the example, the
call to Join won't be waiting forever as initially expected.

There is a way to keep the system from rethrowing the ThreadAbortException, by calling the
Thread.ResetAbort static method. However, the general recommendation is that you only call
ResetAbort from the thread that called Abort. This would require some sort of tricky intrathread
communication technique if you wanted to cause this to happen from within the abort handler of
the thread being aborted. If you find yourself trying to implement such a technique to abort a
thread abort, then maybe it’s time to reassess the design of the system in the first place. In other
words, bad design alert!

Even though the runtime provides a much cleaner mechanism for aborting threads such
that you can inform interested parties when the thread is aborting, you still have to implement a
ThreadAbortException handler properly.

Note The fact that ThreadAbortException instances can be thrown asynchronously into a random managed
thread makes it tricky to create robust exception-safe code. Be sure to read the “Constrained Execution Regions”
section in Chapter 7.

Halting Threads and Waking Sleeping Threads

Similar to native threads, there are mechanisms in place for putting a thread to sleep for a defined
period of time or actually halting execution until it is explicitly released again. If a thread just wants
to suspend itself for a prescribed period of time, it may call the static method Thread.Sleep. The
only parameter to the Sleep method is the number of milliseconds the thread should sleep. When
called, this method causes the thread to relinquish the rest of its time slice with the processor and
go to sleep. After the time has expired, the thread may be considered for scheduling again. Natu-
rally, the time duration you pass to Sleep is reasonably accurate, but not exact. That’s because, at

CHAPTER 12 " THREADING IN C#

the end of the duration, the thread is not immediately given time on the processor. There could be
other, higher-priority threads in the queue before it. Therefore, using Sleep to synchronize execu-
tion between two threads is strongly discouraged.

Caution If you find yourself solving synchronization problems by introducing calls to Sleep within your code,
you’re not solving the problems at all. You're merely covering them up even more.

There is even a special value, Timeout.Infinite, that you can pass to Sleep to make the thread
go to sleep forever. You can wake a sleeping thread by interrupting it via the Thread. Interrupt
instance method. Interrupt is similar to Abort in that it wakes up the target thread and throws a
ThreadInterruptedException. Therefore, if your thread function is not equipped to handle the
exception, it will percolate all the way up the call stack until the runtime ends the thread’s execu-
tion. To be safe, you should make your call to Sleep within a try block and catch the
ThreadInterruptException. Unlike the ThreadAbortException, the ThreadInterruptException is not
automatically rethrown by the runtime at the end of the exception handler.

Note Another special parameter value for Thread.Sleep is 0. If you pass 0, Thread. Sleep will cause the
thread to relinquish the rest of its time slice. The thread will then be allowed to run again once the system thread
scheduler comes back around to it.

Another way to put a thread to sleep for an indefinite time is via the Thread. Suspend instance
method. Calling Suspend will suspend execution of the thread until it is explicitly resumed. You can
resume the thread by calling the Resume instance method or Interrupt. However, with Interrupt,
the target thread needs to have a proper exception handler around the Suspend call; otherwise, the
thread will exit. Technically, calling Abort on the thread will resume the thread, but only to send it a
ThreadAbortException and cause the thread to exit. Keep in mind that any thread with sufficient
privileges can call Suspend on a thread—even the current thread can call Suspend. If the current
thread calls Suspend, it blocks at that point, waiting for the next Resume call.

It’s important to note that when you call Suspend on a thread, the thread is not suspended
immediately in its tracks. Instead, the thread is allowed to execute to what’s called a safe point. Once
it reaches the safe point, the thread is suspended. A safe point is a place in the managed code where
it is safe to allow garbage collection. For instance, if the CLR determines it is time to perform a
garbage collection, it must suspend all threads temporarily while it performs the collection. How-
ever, as you can imagine, if a thread is in the middle of a multi-instruction operation that accesses
an object on the heap, and then the GC comes along and moves that object to a different place in
system memory, only bad things will happen. For that reason, when the GC suspends threads for
collection, it must wait until they all have reached a safe point where it is OK to move things around
on the heap. For this reason, the call to Suspend allows the thread to reach a safe point before actu-
ally suspending it. I also want to stress that you should never use Suspend and Resume to orchestrate
thread synchronization. Of course, the fact that the system allows the thread to continue running
until it reaches a safe point is a good enough reason not to rely on this mechanism, but it’s also a
bad design practice.

Waiting for a Thread to Exit

In this chapter’s previous examples, I've used the Join method to wait for a specific thread to exit. In
fact, that is exactly what it is used for. In an unmanaged Win32 application, you may have been
accustomed to waiting for the thread handle to become signaled to indicate the completion of the

325

326

CHAPTER 12 I THREADING IN C#

thread. The Join method is the same mechanism indeed. The name of the method is suggestive of
the fact that you're joining the current thread’s execution path to that of the thread you're calling
Join on, and you cannot proceed until your joined thread arrives.

Naturally, you'll want to avoid calling Join on the current thread. The effect is similar to calling
Suspend from the current thread. The thread is blocked until it is interrupted. Even when a thread is
blocked from calling Join, it can be awoken via a call to Interrupt or Abort as described in the pre-
vious section.

Sometimes, you'll want to call Join to wait for another thread to complete, but you won't want
to get stuck waiting forever. Join offers overloads that allow you to designate the amount of time
you're willing to wait. Those overloads return a Boolean value that returns true to indicate that the
thread actually terminated, or false to indicate that the timeout expired.

Foreground and Background Threads

When you create a thread in the .NET managed environment, it exists as a foreground thread by
default. This means that the managed execution environment, and thus the process, will remain
alive as long as the thread is alive. Consider the following code:

using System;

using System.Threading;

public class EntryPoint

{
private static void ThreadFunci() {
Thread.Sleep(5000);
Console.Writeline("Exiting extra thread");
}
static void Main() {
Thread thread1 =
new Thread(new ThreadStart(EntryPoint.ThreadFunci));
threadi.Start();
Console.Writeline("Exiting main thread");
}
}

If you run this code, you'll see that Main exits before the extra thread finishes, as expected. (C++
developers will find that very different from the behavior they're used to, where the process nor-
mally terminates once the main routine in the application exits.)

At times, you might want the process to terminate when the main thread finishes, even when
there are extra threads in the background. You can accomplish this in the runtime by turning the
extra thread into a background thread by setting the Thread.IsBackground property to true. You'll
want to consider doing this for threads that do stuff such as listen on a port for network connec-
tions, or some other background task such as that. Keep in mind, though, that you always want to
make sure that your threads get a proper chance to clean up if they need to before they are shut
down. When a background thread is shut down as the process exits, it doesn't receive an exception
of any type as it does when someone calls Interrupt or Abort. So, if the thread has persistent data in
some sort of half-baked state, shutting down the process will definitely not be good for that persist-
ent data. Therefore, when creating background threads, make sure they are coded so that they can

CHAPTER 12 " THREADING IN C#

be terminated rudely at any point without any adverse effects. You can also implement some sort of
mechanism to notify the thread that the process is to shut down soon. Creating such a mechanism
will prove messy, since the main thread will need to wait a reasonable amount of time after firing
the notification for the extra thread to do its cleanup work. At that point, it almost becomes reason-
able to turn the thread back into a foreground thread.

Thread-Local Storage

You can create thread-local storage in the managed environment. Depending on your application, it
may be necessary for you to have a static field of a class that is unique for each thread that the class
is used in. Doing so is trivially easy in the majority of the cases in C#. If you have a static field that
must be thread-relative, simply adorn it with the ThreadStaticAttribute attribute. Once you do
that, the field will be initialized for each thread that accesses it. Under the covers, each thread is
given its own thread-relative location to save the value or reference. However, when using refer-
ences to objects, be careful with your assumptions about object creation. The following code shows
a pitfall to avoid:

using System;

using System.Threading;

public class TLSClass

{
public TLSClass() {
Console.WritelLine("Creating TLSClass");
}
}
public class TLSFieldClass
{
[ThreadStatic]
public static TLSClass tlsdata = new TLSClass();
}
public class EntryPoint
{

private static void ThreadFunc() {
Console.WritelLine("Thread {0} starting...",
Thread.CurrentThread.GetHashCode());
Console.WritelLine("tlsdata for this thread is \"{o}\"",
TLSFieldClass.tlsdata);
Console.Writeline("Thread {0} exiting",
Thread.CurrentThread.GetHashCode());
}

static void Main() {

Thread thread1 =
new Thread(new ThreadStart(EntryPoint.ThreadFunc));

Thread thread2 =
new Thread(new ThreadStart(EntryPoint.ThreadFunc));

thread1.Start();
thread2.Start();

327

328

CHAPTER 12 I THREADING IN C#

This code creates two threads that access a thread-relative static member of TLSFieldClass. To
illustrate the trap, I've made that thread-specific slot of type TLSClass, and the code attempts to
initialize that slot with an initializer in the class definition that simply calls new on the default con-
structor of the class. Now, look how surprising the output is:

Thread 3 starting...

Thread 4 starting...

Creating TLSClass

tlsdata for this thread is "TLSClass"
Thread 3 exiting

tlsdata for this thread is ""

Thread 4 exiting

Caution Always remember that ordering of execution in multithreaded programs is never guaranteed unless
you employ specific synchronization mechanisms. This output was generated on a single-processor system. If you
run the same application on a multiprocessor system, you'll likely see that the output executes in a completely dif-
ferent order. Nevertheless, the purpose of the example does not change.

The important thing to take note of is that the constructor for TLSClass was only called once.
The constructor was called for the first thread, but not for the second thread. For the second thread,
the field is initialized to null. Since t1sdata is static, its initialization is actually done at the time the
static constructor for the TLSFieldClass is called. However, static constructors can only be called
once per class per application domain. For this reason, you want to avoid assigning thread-relative
slots at the point of declaration. That way, they will always be assigned to their default values. For
reference types, that means null, and for value types, it means the equivalent of setting all of the
bits in the value’s underlying storage to 0. Then, upon first access to the thread-specific slot, you can
test the value for null and create an instance as appropriate. Of course, the cleanest way to achieve
this is always to access the thread-local slot via a static property.

As an added note, don’t think that you can outsmart the compiler by adding a level of indirec-
tion, such as assigning the thread-relative slot based on the return value of a static method. You'll
find that your static method will only get called once. If the CLR were to “fix” this problem for you, it
would undoubtedly be less efficient because it would have to test whether the field is being
accessed for the first time and call the initialization code if that is the case. If you think about it,
you’'ll find that task is a lot harder than it sounds, since it will be impossible to do the right thing
100% of the time.

There is another way to use thread-local storage that doesn't involve decorating a static method
with an attribute. You can allocate thread-specific storage dynamically by using either of the
Thread.AllocateDataSlot or Thread.AllocateNamedDataSlot methods. You'll want to use these
methods if you won’t know how many thread-specific slots you'll need to allocate until runtime.
Otherwise, it’s generally much easier to use the static field method. When you call
AllocateDataSlot, a new slot is allocated in all threads to hold a reference to an instance of type
System.Object. The method returns a handle of sorts in the form of a LocalDataStoreSlot object
instance. You can access this location using the GetData and SetData methods on the thread. Let’s
look at a modification of the previous example:
using System;
using System.Threading;

public class TLSClass
{

CHAPTER 12 " THREADING IN C#

static TLSClass() {
tlsSlot = Thread.AllocateDataSlot();
}

public TLSClass() {
Console.Writeline("Creating TLSClass");

}
public static TLSClass TlsSlot {
get {
Object obj = Thread.GetData(tlsSlot);
if(obj == null) {
obj = new TLSClass();
Thread.SetData(tlsSlot, obj);
}
return (TLSClass) obj;
}
}
private static LocalDataStoreSlot tlsSlot = null;
}
public class EntryPoint
{
private static void ThreadFunc() {
Console.Writeline("Thread {0} starting...",
Thread.CurrentThread.GetHashCode());
Console.Writeline("tlsdata for this thread is \"{o}\"",
TLSClass.T1sSlot);
Console.WritelLine("Thread {0} exiting",
Thread.CurrentThread.GetHashCode());
}
static void Main() {
Thread thread1l =
new Thread(new ThreadStart(EntryPoint.ThreadFunc));
Thread thread2 =
new Thread(new ThreadStart(EntryPoint.ThreadFunc));
thread1.Start();
thread2.Start();
}
}

As you can see, using dynamic slots is a little more involved than using the static field method.
However, it does provide some extra flexibility. Notice that the slot is allocated in the type initializer,
which is the static constructor you see in the example. That way, the slot is allocated for all threads
at the point where the runtime initializes the type for use. Notice that I'm testing the slot for null in
the property accessor of the TLSClass. When you allocate the slot using AllocateDataSlot, the slot is
initialized to null for each thread.

You may find it convenient to access your thread-specific storage via a string name rather than
with a reference to a LocalDataStoreSlot instance. However, you must be careful to use a reason-
ably unique name so that use of that same name elsewhere in the code won't cause adverse effects.
You may consider naming your slot using a string representation of a GUID, so that you can reason-
ably assume that nobody will attempt to create one with the same name. When you need to access

329

330

CHAPTER 12 I THREADING IN C#

the slot, you can call GetNamedDataSlot, which will simply translate your string into a
LocalDataStoreSlot instance. I urge you to read the MSDN documentation regarding named
thread-local storage slots to get more details.

Most of this will be familiar to those developers who have used thread-local storage in Win32.
There is one improvement, though: Because managed TLS slots are implemented in a different way,
the limitation on the number of Win32 TLS slots doesn’t apply.

How Unmanaged Threads and COM Apartments Fit In

It is possible for unmanaged threads to enter the managed environment from the outside. For
example, managed objects can be exposed to native code via the COM interop layer. When the
native thread calls through to the object, it enters the managed environment. When this happens,
the CLR makes note of that fact, and if it is the first time the unmanaged thread has called into the
CLR, it sets up the necessary bookkeeping structures allowing it to run as a managed thread within
the managed runtime. As I mentioned before, threads that enter the managed environment this
way initially start their managed thread existence in the Running state, as shown in Figure 12-1.
Once this bookkeeping is set up, then each time the same unmanaged thread enters the runtime, it
is associated with the same managed thread.

Just as managed objects can be exposed to the native world as COM objects, COM objects can
be exposed to the managed world as managed objects. When a managed thread calls out to a COM
object in this way, the runtime relinquishes control over the thread’s state until it reenters the man-
aged environment.

Suppose a COM object, written in native C++, calls the WaitForSingleObject Win32 API function
to wait for a particular synchronization object to become signaled. Then, if a managed thread calls
Thread.Abort or Thread. Interrupt to wake up the thread, the wakeup will be pended until the thread
reenters the managed environment. In other words, it will have no effect while the thread is executing
unmanaged code. Therefore, you want to be reasonably cognizant of what sorts of synchronization
mechanisms are being used by native COM objects that your native code is calling out to.

Finally, if you've ever done an extensive amount of COM development in the past, then you're
familiar with the notion of a COM apartment and the proxies and stubs that go along with them.!
When managed code calls out into COM objects, it is important that the managed code be set up to
call the unmanaged COM object through either a single-threaded apartment (STA) or a multi-
threaded apartment (MTA). You can set this property on a new managed thread by setting the
Thread.ApartmentState property. Once the thread makes a COM call, this state gets locked in. In
other words, you cannot change it afterwards. You can set the property after the first COM call all
you want, but it will have no effect. When you call out to COM objects from managed code, it’s best
to know the type of apartment the COM objects will run in. That way, you can judiciously choose
which type of COM apartment you want your thread to run in. Choosing the wrong type may intro-
duce inefficiencies by forcing calls to go through proxies and stubs. In even worse cases, COM
objects may not be callable from other apartment types.

Using Thread.ApartmentState, you can control the COM apartment property for new managed
threads that you create. But what about the main thread of an application? The fact is that once the
main thread of a managed application is running, it’s already too late to set the ApartmentState
property. That’s because the managed runtime initializes the main thread to the MTA state as the
managed application is initialized. If you need to change the ApartmentState of the main thread to
STA, the only way to do so is by decorating the Main method with the STAThreadAttribute attribute.

1. For a detailed description of COM apartments and how they work, I suggest you read Don Box’s Essential
COM (Boston, MA: Addison-Wesley Professional, 1997).

CHAPTER 12 " THREADING IN C#

Incidentally, you could also decorate it with the MTAThreadAttribute attribute, but that would be
redundant since that’s the CLR’s default choice. The following code shows an example of what I'm
talking about:

public class EntryPoint

{
[STAThread]
static void Main() {
}

}

If you've ever worked with Windows Forms applications, especially those generated by the wiz-
ards of Visual Studio, you probably have already seen this attribute and wondered what it was all
about. By decorating the main Ul thread of GUI applications with this attribute, you can integrate
native ActiveX controls more easily in the GUI, since those normally run in an STA.

Note that the ApartmentState property of a managed thread has no effect on the execution of
managed code. And more importantly, when managed objects are consumed by native applications
via the COM interop layer, the ApartmentState doesn't control what apartment the object appears to
live in from the perspective of the native application. From the native side of the fence, all managed
objects appear as COM objects that live in the MTA and integrate the Free Threaded Marhsaller
(FTM). Also, all threads created in the CLR’s thread pool always live in the MTA for the process.

Synchronizing Work Between Threads

Synchronization is arguably the most difficult part of creating multithreaded applications. You can
create extra threads to do work all day long without having to worry about synchronization, as long
as those threads consume some data at startup that no other thread uses and do some work.
Nobody needs to know when they finish or what the results of their operations are. Obviously, it’s a
rare case that you'll create such a thread. In most cases, you need to communicate with the running
thread, wait for it to reach a defined state in the code, or possibly work on the same object or value
instances that other threads are working on.

In all of those cases, and more, you must rely upon synchronization techniques to synchronize
the threads to avoid race conditions and deadlocks. With race conditions, two threads may need to
access the same piece of memory and only one can safely do so at a time. In these cases, you must
use a synchronization mechanism that will only allow one thread at a time to access the data and
lock out the other thread, making it wait until the first one is done. Multithreaded environments are
stochastic in nature, and you never know when the scheduler will take away control from the
thread. The classic example is where one thread gets halfway through changing a block of memory,
loses control, and then the other thread is given control and starts reading the memory, assuming
that it is in a valid state. An example of a deadlock is when two threads are waiting for each other to
release a resource. Both threads end up waiting for each other, and since neither one of them can
run until the wait is satisfied, they will end up waiting forever.

In all synchronization tasks, you should use the most lightweight sync mechanism that you can
get away with and no heavier. For example, if you're trying to share a data block between two threads
in the same process and you must gate access between the two, use something such as a Monitor lock
rather than a Mutex. Why? Because a Mutex is meant to gate access to a shared resource between
processes, and therefore, is a heavyweight OS object that slows down the process when acquiring
and releasing the lock. If no interprocess locking is necessary, use the Monitor instead. Even more
lightweight than the Monitor is a set of methods in the Interlocked class. These are ideal when you
know that the likelihood of actually having to wait a good while when acquiring a lock is low.

331

332

CHAPTER 12 I THREADING IN C#

Note Any type of wait on a kernel object—such as waiting on a Mutex, Semaphore, EventWaitHanldle, or
any other wait that boils down to waiting on a Win32 kernel object—requires a transition to kernel mode. Transi-
tions to kernel mode are expensive, and you should avoid them if at all possible. For example, if the threads you
are synchronizing live in the same process, kernel synchronization objects are probably too heavy. The lightest
synchronization technique involves crafty use of the Threading. Interlocked class. Its methods are all imple-
mented completely in user mode, thus allowing you to avoid the user-to-kernel mode transition.

When using synchronization objects in a multithreaded environment, you want to hold the
lock for as little time as possible. For example, if you acquire a synchronization lock to read a shared
structure instance, and code within the method that acquires the lock uses that instance of the
structure for some purpose, it’s best to make a local copy of the structure on the stack and then
release the lock immediately, unless it is logically impossible. That way, you don't tie up other
threads in the system that need to access the guarded variable.

When you need to synchronize thread execution, never rely upon methods such as Thread.
Suspend or Thread.Resume to control thread synchronization. If you recall from a previous section in
this chapter, calling Thread.Suspend doesn't actually suspend the thread immediately. Instead, it
must get to a safe point within the managed code before it can suspend execution. And never use
Thread.Sleep to synchronize threads. Thread.Sleep is appropriate when you’re doing some sort of
polling loop on an entity, such as device hardware that has just been reset and has no way of notify-
ing anyone that it is back online. In that case, you don’t want to check the state in a loop repeatedly.
Instead, it's much nicer to sleep a little bit between polling, to allow the scheduler to let other
threads run. I've said this in a previous section, but I'll say it again because it’s so important: If you
ever find yourself solving a synchronization bug by introducing a call to Thread. Sleep at some
seemingly random point in the code, you're not solving the problem at all. Rather, you're hiding it
even deeper. Just don’t do it!

Lightweight Synchronization with the Interlocked Class

Those of you who come from the unmanaged world of programming against the Win32 API proba-
bly already know about the Interlocked. .. family of functions. Thankfully, those functions have
been exposed to managed C# developers via static methods on the Interlocked class in the
System.Threading namespace. Sometimes, when running multiple threads, it’'s necessary to main-
tain a simple variable—typically, a value, but possibly an object—between the multiple threads. For
example, suppose you have some reason to track the number of running threads in a static integer
somewhere. When a thread begins, it increments that value, and when it finishes, it decrements that
value. Obviously, you must synchronize access to that value somehow, since the scheduler could
take away control from one thread and give it to another when the first one is in the process of
updating the value. Even worse, the same code could be executing concurrently on a multiproces-
sor machine. For this task, you can use Interlocked.Increment and Interlocked.Decrement. These
methods are guaranteed to modify the value atomically across all processors in the system. Take a
look at the following example:

using System;

using System.Threading;

public class EntryPoint
{

static private int numberThreads = 0;

static private Random rnd = new Random();

CHAPTER 12 " THREADING IN C#

private static void RndThreadFunc() {
// Manage thread count and wait for a
// random amount of time between 1 and 12
// seconds.
Interlocked.Increment(ref numberThreads);
try {
int time = rnd.Next(1000, 12000);
Thread.Sleep(time);

}
finally {

Interlocked.Decrement(ref numberThreads);
}

}

private static void RptThreadFunc() {
while(true) {
int threadCount = 0;
threadCount =
Interlocked.Exchange(ref numberThreads,

numberThreads);

Console.WritelLine("{0} thread(s) alive",

threadCount);
Thread.Sleep(1000);

}

static void Main() {
// Start the reporting threads.
Thread reporter =
new Thread(new ThreadStart(
EntryPoint.RptThreadFunc));
reporter.IsBackground = true;
reporter.Start();

// Start the threads that wait random time.
Thread[] rndthreads = new Thread[50];
for(uint i = 0; 1 < 50; ++i) {
rndthreads[i] =
new Thread(new ThreadStart(
EntryPoint.RndThreadFunc));
rndthreads[i].Start();

This little program creates 50 foreground threads that do nothing but wait a random period of
time between 1 and 12 seconds. It also creates a background thread that reports how many threads
are currently alive. If you look at the RndThreadFunc method, which is the thread function that the 50
threads use, you can see it increment and decrement the integer value using the Interlocked meth-
ods. Notice that I use a finally block to ensure that the value gets decremented no matter how the
thread exits. You could use the disposable trick with the using keyword by wrapping the increment
and decrement in a separate class that implements IDisposable. That would get rid of the ugly
finally block. But, in this case, it wouldn't help you at all, since you'd also have to create a reference
type to contain the integer count variable, as you cannot store a ref to the integer as a field in the
helper class.

333

334

CHAPTER 12 I THREADING IN C#

You've already seen Interlocked.Increment and Interlocked.Decrement in action. But what
about Interlocked.Exchange, which the reporter thread uses? Remember, since multiple threads are
attempting to write to the threadCount variable, the reporter thread must read the value in a syn-
chronized way as well. That's where Interlocked.Exchange comes in. Interlocked.Exchange, as its
name implies, allows you to exchange the value of a variable with that of another in an atomic fash-
ion, and it returns the value that was stored previously in that location. Since the Interlocked class
doesn’t provide a method to simply read an Int32 value in an atomic operation, all I'm doing is
swapping the numberThreads variable’s value with its own value, and, as a side effect, the
Interlocked.Exchange method returns to me the value that was in the slot.

INTERLOCKED METHODS ON SMP SYSTEMS

On Intel symmetric multiprocessing (SMP) platforms and most other SMP systems, simple reads and writes to
memory slots that are of the native size are synchronized automatically. On an IA-32 system, reads and writes to
properly aligned 32-bit values are synchronized. Therefore, in the previous example where | showed the use of
Interlocked.Exchange merely to read an Int32 value, it would not have been necessary if the variable were
aligned properly.

By default, the CLR works hard to make sure that values are aligned properly on natural boundaries. However,
you can override the placement of values within a class or structure using the FieldOffsetAttribute on fields,
thus forcing a misaligned data field. If an Int32 is not aligned, the guarantee mentioned in the previous paragraph
is lost. In such a case, you must use Interlocked.Exchange to read the value reliably.

The Interlocked. .. methods are all implemented on IA-32 systems using the 1ock prefix. This prefix
causes the processor LOCK# signal to be asserted. This prevents the other processors in the system from accessing
the value concurrently, which is necessary for complex operations where values are incremented and so on. One
handy quality of the 1ock prefix is that the misaligned data field does not adversely affect the integrity of the lock.
In other words, it works perfectly fine with misaligned data. That's why Interlocked.Exchange is the ticket for
reading misaligned data atomically.

Finally, consider the fact that the Interlocked class implements overloads of some of the methods so that
they work with 64-bit values, floating-point numbers, and object references. In fact, Interlocked. . . even offers
generic overloads for working with object references. Consider what it means to work with 64-bit values atomically
on a 32-bit system. Naturally, there is no possible way to read such values atomically without resorting to the
Interlocked class. In fact, for this very reason, the .NET 2.0 version of the Interlocked class introduced
Interlocked.Read for Int64 values. Naturally, such a beast is not necessary on 64-bit systems and should sim-
ply boil down to a regular read. However, the CLR is meant to work on multiple platforms, so you should always use
Interlocked.Read when working with 64-bit values.

For these reasons, it would be better safe than sorry to always use Interlocked.Exchange for reading and
writing values atomically, since it could prove troublesome to validate that the data is not misaligned and no bigger
than the native size prior to reading or writing it in a raw manner. Determining the native size on the platform and
basing code conditionally on such data goes against the grain of the cross-platform spirit of managed code.

The last method to cover in the Interlocked class is CompareExchange. This little method is
handy indeed. It’s similar to Interlocked.Exchange, in that it allows you to exchange the value of a
location or slot in an atomic fashion. However, it only does the exchange if the original value com-
pares equal to a provided comparand. In any event, the method always returns the original value.
One extremely handy use of the CompareExchange method is to create a lightweight spin lock. A spin
lock gets its name from the fact that if it cannot acquire the lock, it will spin in a tight loop until it
can. Typically, when implementing a spin lock, you put your thread to sleep for a very brief slice of
time with each failed attempt to acquire the lock. That way, the thread scheduler can give processor

CHAPTER 12 " THREADING IN C#

time to another thread while you wait. If you don’t want the thread to sleep but only to release its
time slice, you can pass a value of 0 to Thread.Sleep. Let’s look at an example:

using System;
using System.IO;
using System.Threading;

public class SpinLock
{
public SpinLock(int spinWait) {
this.spinWait = spinWait;
}

public void Enter() {
while(Interlocked.CompareExchange(ref thelock,
1,
0) = 1)
// The lock is taken, spin.
Thread.Sleep(spinWait);

}

public void Exit() {
// Reset the lock.
Interlocked.Exchange(ref thelock,
0);

}

private int thelock = 0;
private int spinWait;

}

public class SpinlLockManager : IDisposable
{
public SpinLockManager(SpinLock spinLock) {
this.spinlock = spinlock;
spinLock.Enter();
}

public void Dispose() {
spinLock.Exit();
}

private SpinLock spinlock;

}

public class EntryPoint
{
static private Random rnd = new Random();
private static SpinLock loglLock = new SpinLock(10);
private static StreamWriter fslLog =
new StreamWriter(File.Open("log.txt",
FileMode.Append,
FileAccess.Write,
FileShare.None));

335

336 CHAPTER 12 I THREADING IN C#

private static void RndThreadFunc() {
using(new SpinLockManager(loglLock)) {
fslog.WriteLine("Thread Starting");
fsLog.Flush();

int time = rnd.Next(10, 200);
Thread.Sleep(time);

using(new SpinlLockManager(loglock)) {
fslog.WriteLine("Thread Exiting");
fsLog.Flush();

}

static void Main() {

// Start the threads that wait random time.

Thread[] rndthreads = new Thread[50];

for(uint 1 = 0; 1 < 50; ++i) {
rndthreads[i] =

new Thread(new ThreadStart(
EntryPoint.RndThreadFunc));

rndthreads[i].Start();

This example is similar to the previous one. It creates 50 threads that wait a random amount of
time. However, instead of managing a thread count, it outputs a line to a log file. Since this writing is
happening from multiple threads, and instance methods of StreamhWriter are not thread-safe, you
must do the writing in a safe manner within the context of a lock. That is where the SpinlLock class
comes in. Internally, it manages a lock variable in the form of an integer, and it uses Interlocked.
CompareExchange to gate access to the lock. The call to Interlocked.CompareExchange in
SpinLock.Enter is saying

1. If the lock value is equal to 0, replace the value with 1 to indicate that the lock is taken; oth-
erwise, do nothing.

2. If the value of the slot already contains 1, it’s taken, and you must sleep and spin.

Both of those items occur in an atomic fashion via the Interlocked class, so there is no possible
way that more than one thread at a time can acquire the lock. When the SpinLock.Exit method is
called, all it needs to do is reset the lock. However, that must be done atomically as well—hence, the
call to Interlocked.Exchange.

In this example, I decided to illustrate the use of the disposable/using idiom to implement
deterministic destruction, where you introduce another class—in this case, SpinLockManager—to
implement the RAIIl idiom. This saves you from having to remember to write finally blocks all over
the place. Of course, you still have to remember to use the using keyword, but if you follow the
idiom more closely than this example, you would implement a finalizer that would assert in the
debug build if it ran and the object had not been disposed of.?

2. See Chapter 13 for more information on this technique.

CHAPTER 12 " THREADING IN C#

Keep in mind that spin locks implemented in this way are not reentrant. Any function that has
acquired the lock cannot be called again until it has released the lock. This doesn't mean that you
cannot use spin locks with recursive programming techniques. It just means that you must release
the lock before recursing, or else suffer a deadlock.

Note If you require a reentrant wait mechanism, you can use wait objects that are more structured, such as the
Monitor class, which | cover in the next section, or kernel-based wait objects.

Incidentally, if you'd like to see some fireworks, so to speak, try uncommenting the use of the
spin lock in the RndThreadFunc method and run the result several times. You'll most likely notice the
output in the log file gets a little ugly. The ugliness should increase if you attempt the same test on a
multiprocessor machine.

Monitor Class

In the previous section, I showed you how to implement a spin lock using the methods of the
Interlocked class. A spin lock is not always the most efficient synchronization mechanism, espe-
cially if you use it in an environment where a wait is almost guaranteed. The thread scheduler keeps
having to wake up the thread and allow it to recheck the lock variable. As I mentioned before, a spin
lock is ideal when you need a lightweight, non-reentrant synchronization mechanism and the odds
are low that a thread will have to wait in the first place. When you know the likelihood of waiting is
high, you should use a synchronization mechanism that allows the scheduler to avoid waking the
thread until the lock is available. .NET provides the System.Threading.Monitor class to allow syn-
chronization between threads within the same process. You can use this class to guard access to
certain variables or to gate access to code that should only be run on one thread at a time.

Note The Monitor pattern provides a way to ensure synchronization such that only one method, or a block of
protected code, executes at one time. A Mutex is typically used for the same task. However, Monitor is much
lighter and faster. Monitor is appropriate when you must guard access to code within a single process. Mutex is
appropriate when you must guard access to a resource from multiple processes.

One potential source of confusion regarding the Monitor class is that you cannot instantiate an
instance of this class. The Monitor class, much like the Interlocked class, is merely a containing
namespace for a collection of static methods that do the work. If you're used to using critical sec-
tions in Win32, you know that at some point you must allocate and initialize a CRITICAL_SECTION
structure. Then, to enter and exit the lock, you call the Win32 EnterCriticalSection and
LeaveCriticalSection functions. You can achieve exactly the same task using the Monitor class in
the managed environment. To enter and exit the critical section, you call Monitor.Enter and
Monitor.Exit. Where you pass a CRITICAL_SECTION object to the Win32 critical section functions,
you pass an object reference to the Monitor methods.

Internally, the CLR manages a sync block for every object instance in the process. Basically, it’s
a flag of sorts, similar to the integer used in the examples of the previous section describing the
Interlocked class. When you obtain the lock on an object, this flag is set. When the lock is released,
this flag is reset. The Monitor class is the gateway to accessing this flag. The versatility of this scheme
is that every object instance in the CLR potentially contains one of these locks. I say potentially
because the CLR allocates them in a lazy fashion, since not every object instance’s lock will be uti-

337

338 CHAPTER 12 I THREADING IN C#

lized. To implement a critical section, all you have to do is create an instance of Object. Let’s look at
an example using the Monitor class by modifying the example from the previous section:

using System;
using System.Threading;

public class EntryPoint

{
static private object thelLock = new Object();
static private int numberThreads = 0;
static private Random rnd = new Random();

private static void RndThreadFunc() {
// Manage thread count and wait for a
// random amount of time between 1 and 12
// seconds.
try {
Monitor.Enter(thelock);
++numberThreads;
}
finally {
Monitor.Exit(thelock);
}

int time = rnd.Next(1000, 12000);
Thread.Sleep(time);

try {
Monitor.Enter(thelock);
—numberThreads;

}
finally {

Monitor.Exit(thelock);
}

}

private static void RptThreadFunc() {
while(true) {
int threadCount = 0;
try {
Monitor.Enter(thelock);
threadCount = numberThreads;

}
finally {

Monitor.Exit(thelock);
}

Console.WritelLine("{0} thread(s) alive",
threadCount);
Thread.Sleep(1000);

}

static void Main() {
// Start the reporting threads.

CHAPTER 12 " THREADING IN C#

Thread reporter =
new Thread(new ThreadStart(
EntryPoint.RptThreadFunc));
reporter.IsBackground = true;
reporter.Start();

// Start the threads that wait random time.
Thread[] rndthreads = new Thread[50];
for(uint i = 0; 1 < 50; ++i) {
rndthreads[i] =
new Thread(new ThreadStart(
EntryPoint.RndThreadFunc));
rndthreads[i].Start();

Notice that I perform all access to the numberThreads variable within a critical section in the
form of an object lock. Before each access, the accessor must obtain the lock on the thelLock object
instance. The type of thelock field is of type object simply because its actual type is inconsequen-
tial. The only thing that matters is that it is a reference type—that is, an instance of object rather
than a value type. Since you only need the object instance to utilize its internal sync block, you can
just instantiate an object of type System.Object.

One thing you've probably also noticed is that the code is uglier than the version that used the
Interlocked methods. Whenever you call Monitor.Enter, you want to guarantee that the matching
Monitor.Exit executes no matter what. I mitigated this problem in the examples using the
Interlocked class by wrapping the usage of the Interlocked class methods within a class named
SpinLockManager. Can you imagine the chaos that could ensue if a Monitor.Exit call was skipped
because of an exception? Therefore, you always want to utilize a try/finally block in these situa-
tions. The creators of the C# language recognized that developers were going through a lot of effort
to ensure that these finally blocks were in place when all they were doing was calling
Monitor.Exit. So, they made our lives easier by introducing the lock keyword. Consider the same
example again, this time using the lock keyword:
using System;
using System.Threading;

public class EntryPoint

{
static private object thelLock = new Object();
static private int numberThreads = 0;
static private Random rnd = new Random();

private static void RndThreadFunc() {
// Manage thread count and wait for a
// random amount of time between 1 and 12
// seconds.
lock(theLock) {
++numberThreads;
}

int time = rnd.Next(1000, 12000);
Thread.Sleep(time);

lock(theLock) {

339

340

CHAPTER 12 I THREADING IN C#

—numberThreads;

}

private static void RptThreadFunc() {
while(true) {

int threadCount = 0;
lock(theLock) {
threadCount = numberThreads;

}

Console.Writeline("{0} thread(s) alive",
threadCount);
Thread.Sleep(1000);

}

static void Main() {
// Start the reporting threads.
Thread reporter =
new Thread(new ThreadStart(
EntryPoint.RptThreadFunc));
reporter.IsBackground = true;
reporter.Start();

// Start the threads that wait random time.
Thread[] rndthreads = new Thread[50];
for(uint i = 0; 1 < 50; ++i) {
rndthreads[i] =
new Thread(new ThreadStart(
EntryPoint.RndThreadFunc));
rndthreads[i].Start();

Notice that the code is much cleaner now, and in fact, there are no more explicit calls to any
Monitor methods at all. Under the covers, however, the compiler is expanding the lock keyword into
the familiar try/finally block with calls to Monitor.Enter and Monitor.Exit. You can verify this by
examining the generated IL code using ILDASM.

In many cases, synchronization implemented internally within a class is as simple as imple-
menting a critical section in this manner. But when only one lock object is needed across all
methods within the class, you can simplify the model even more by eliminating the extra dummy
instance of System.Object by using the this keyword when acquiring the lock through the Monitor
class. You'll probably come across this usage pattern often in C# code. Although it saves you from
having to instantiate an object of type System.0bject—which is pretty lightweight, I might add—it
does come with its own perils. For example, an external consumer of your object could actually
attempt to utilize the sync block within your object by calling Monitor.Enter before even calling one
of your methods that will try to acquire the same lock. Technically, that’s just fine, since the same
thread can call Monitor.Enter multiple times. In other words, Monitor locks are reentrant, unlike the
spin locks of the previous section. However, when a lock is released, it must be released by calling
Monitor.Exit a matching number of times. So, now you have to rely upon the consumers of your
object to either use the lock keyword or a try/finally block to ensure that their call to
Monitor.Enter is matched appropriately with Monitor.Exit. Any time you can avoid such

CHAPTER 12 " THREADING IN C#

uncertainty, do so. Therefore, I recommend against locking via the this keyword, and I suggest
instead using a private instance of System.0Object as your lock. You could achieve the same effect if
there were some way to declare the sync block flag of an object private, but alas, that is not possible.

Beware of Boxing

When you're using the Monitor methods to implement locking, internally Monitor uses the sync
block of object instances to manage the lock. Since every object instance can potentially have a
sync block, you can use any reference to an object, even an object reference to a boxed value. Even
though you can, you should never pass a value type instance to Monitor.Enter, as demonstrated in
the following code example:

using System;

using System.Threading;

public class EntryPoint

{
static private int counter = 0;
// NEVER DO THIS !!!
static private int thelock = 0;
static private void ThreadFunc() {
for(int i = 0; 1 < 50; ++i) {
Monitor.Enter(thelLock);
try {
Console.WriteLine(++counter);
}
finally {
Monitor.Exit(thelock);
}
}
}
static void Main() {
Thread thread1 =
new Thread(new ThreadStart(EntryPoint.ThreadFunc));
Thread thread2 =
new Thread(new ThreadStart(EntryPoint.ThreadFunc));
thread1.Start();
thread2.Start();
}
}

If you attempt to execute this code, you will immediately be presented with a
SynchronizationLockException, complaining that an object synchronization method was called
from an unsynchronized block of code. Why does this happen? In order to find the answer, you
need to remember that implicit boxing occurs when you pass a value type to a method that accepts
areference type. And remember, passing the same value type to the same method multiple times
will result in a different boxing reference type each time. Therefore, the reference object used within
the body of Monitor.Exit is different from the one used inside of the body of Monitor.Enter. This is
another example of how implicit boxing in the C# language can cause you grief. You may have
noticed that I used the old try/finally approach in this example. That’s because the designers of
the C# language created the lock statement such that it doesn’t accept value types. So, if you just

34

342

CHAPTER 12 I THREADING IN C#

stick to using the lock statement for handling critical sections, you’ll never have to worry about
inadvertently passing a boxed value type to the Monitor methods.

Pulse and Wait

I cannot overstate the utility of the Monitor methods to implement critical sections. However, the
Monitor methods have capabilities beyond that of implementing simple critical sections. You can
also use them to implement handshaking between threads, as well as for implementing queued
access to a shared resource.

When a thread has entered a locked region successfully, it can give up the lock and enter a
waiting queue by calling Monitor.Wait. The first parameter to Monitor.Wait is the object reference
whose sync block represents the lock being used. The second parameter is a timeout value.
Monitor.Wait returns a Boolean that indicates whether the wait succeeded or if the timeout was
reached. If the wait succeeded, the result is true; otherwise, it is false. When a thread that calls
Monitor.Wait completes the wait successfully, it leaves the wait state as the owner of the lock again.

If threads can give up the lock and enter into a wait state, there must be some mechanism to
tell the Monitor that it can give the lock back to one of the waiting threads as soon as possible. That
mechanism is the Monitor.Pulse method. Only the thread that currently holds the lock is allowed to
call Monitor.Pulse. When it’s called, the thread first in line in the waiting queue is moved to a ready
queue. Once the thread that owns the lock releases the lock, either by calling Monitor.Exit or by
calling Monitor.Wait, the first thread in the ready queue is allowed to run. The threads in the ready
queue include those that are pulsed and those that have been blocked after a call to Monitor.Enter.
Additionally, the thread that owns the lock can move all waiting threads into the ready queue by
calling Monitor.PulseAll.

There are many fancy synchronization tasks that you can accomplish using the Monitor.Pulse
and Monitor.Wait methods. For example, consider the following example that implements a hand-
shaking mechanism between two threads. The goal is to have both threads increment a counter in
an alternating manner:
using System;
using System.Threading;

public class EntryPoint
{

static private int counter = 0;
static private object thelLock = new Object();

static private void ThreadFunci() {
lock(thelock) {
for(int i = 0; 1 < 50; ++i) {

Monitor.Wait(thelLock, Timeout.Infinite);

Console.WritelLine("{0} from Thread {1}",
++counter,
Thread.CurrentThread.GetHashCode());

Monitor.Pulse(thelLock);

}

static private void ThreadFunc2() {
lock(thelock) {
for(int i = 0; 1 < 50; ++i) {
Monitor.Pulse(thelock);
Monitor.Wait(thelLock, Timeout.Infinite);

CHAPTER 12 " THREADING IN C#

Console.WritelLine("{0} from Thread {1}",
++counter,
Thread.CurrentThread.GetHashCode());

}

static void Main() {

Thread thread1 =
new Thread(new ThreadStart(EntryPoint.ThreadFunci));

Thread thread2 =
new Thread(new ThreadStart(EntryPoint.ThreadFunc2));

thread1.Start();

thread2.Start();

}
}

You'll notice that the output from this example shows that the threads increment counter in an
alternating fashion.

As another example, you could implement a crude thread pool using Monitor.Wait and

Monitor.Pulse. It may be unnecessary to actually do such a thing, since the NET Framework offers
the ThreadPool object, which is robust and likely uses optimized I/O completion ports of the under-
lying OS. For the sake of example, however, I'll show how you could implement a pool of worker
threads that wait for work items to be queued:

using System;
using System.Threading;
using System.Collections;

public class CrudeThreadPool

{

static readonly int MAX_WORK_THREADS = 4;
static readonly int WAIT_TIMEOUT = 2000;

public delegate void WorkDelegate();

public CrudeThreadPool() {
stop = 0;
workLock = new Object();
workQueue = new Queue();
threads = new Thread[MAX WORK THREADS];

for(int i = 0; i < MAX WORK_THREADS; ++i) {
threads[i] =
new Thread(new ThreadStart(this.ThreadFunc));
threads[i].Start();

}

private void ThreadFunc() {
lock(workLock) {

int shouldStop = 0;

do {
shouldStop = Interlocked.Exchange(ref stop,

stop);
if(shouldStop == 0) {
WorkDelegate workItem = null;

343

344 CHAPTER 12 I THREADING IN C#

if(Monitor.Wait(workLock, WAIT TIMEOUT)) {
// Process the item on the front of the
// queue
lock(workQueue) {
workItem =
(WorkDelegate) workQueue.Dequeue();

workItem();
}

}
} while(shouldStop == 0);

}

public void SubmitWorkItem(WorkDelegate item) {
lock(workLock) {
lock(workQueue) {
workQueue.Enqueue(item);
}

Monitor.Pulse(workLock);

}

public void Shutdown() {
Interlocked.Exchange(ref stop, 1);
}

private Queue workQueue;
private Object worklock;
private Thread[] threads;

private int stop;
}
public class EntryPoint
{
static void WorkFunction() {
Console.Writeline("WorkFunction() called on Thread {0}",
Thread.CurrentThread.GetHashCode());
}
static void Main() {
CrudeThreadPool pool = new CrudeThreadPool();
for(int i =0; 1 < 10; ++i) {
pool.SubmitWorkItem(
new CrudeThreadPool.WorkDelegate(
EntryPoint.WorkFunction));
}
pool.Shutdown();
}
}

In this case, the work item is represented by a delegate that neither accepts nor returns any val-
ues. When the CrudeThreadPool object is created, it creates a pool of threads and starts them
running the main work item processing method. That method simply calls Monitor.Wait to wait for

CHAPTER 12 " THREADING IN C#

an item to be queued. When SubmitWorkItem is called, an item is pushed into the queue and it calls
Monitor.Pulse to release one of the worker threads. Naturally, access to the queue must be synchro-
nized. In this case, the reference type used to sync access is the queue itself. Additionally, the worker
threads must not wait forever, because they need to wake up periodically and check a flag to see if
they should shut down gracefully. Optionally, you could simply turn the worker threads into back-
ground threads by setting the IsBackground property inside the Shutdown method. However, in that
case, the worker threads may be shut down before they're finished processing their work. Depend-
ing on your situation, that may or may not be favorable. Notice that I chose to use the Interlocked
methods to manage the stop flag used to indicate that the worker threads should exit.

Note Another useful technique for telling threads to shut down is to create a special type of work item that tells
a thread to shut down. The trick is that you need to make sure you push as many of these special work items onto
the queue as there are threads in the pool.

Locking Objects

The .NET Framework offers several high-level locking objects that you can use to synchronize
access to data from multiple threads. I dedicated the previous section entirely to one type of lock:
the Monitor. However, the Monitor class doesn’'t implement a kernel lock object; rather, it provides
access to the sync lock of every .NET object instance. Previously in this chapter, I also covered the
primitive Interlocked class methods that you can use to implement spin locks. One reason spin
locks are considered so primitive is that they are not reentrant and thus don’t allow you to acquire
the same lock multiple times. Other higher-level locking objects typically do allow that, as long as
you match the number of lock operations with release operations. In this section, I want to cover
some useful locking objects that the .NET Framework provides.

No matter what type of locking object you use, you should always strive to write code that
keeps the lock for the least time possible. For example, if you acquire a lock to access some data
within a method that could take quite a bit of time to process that data, acquire the lock only long
enough to make a copy of the data on the local stack, and then release the lock as soon as possible.
By using this technique, you will ensure that other threads in your system don't block for inordinate
amounts of time to access the same data.

ReaderWriterLock

When synchronizing access to shared data between threads, you'll often find yourself in a position
where you have several threads reading, or consuming, the data, while only one thread writes, or
produces, the data. Obviously, all threads must acquire a lock before they touch the data to prevent
the race condition in which one thread writes to the data while another is in the middle of reading
it, thus potentially producing garbage for the reader. However, it sure seems inefficient for multiple
threads that are merely going to read the data rather than modify it to be locked out from each
other. There is no reason why they should not be able to all read the data concurrently without hav-
ing to worry about stepping on each other’s toes.

The ReaderWriterLock elegantly avoids this inefficiency. In a nutshell, it allows multiple readers
to access the data concurrently, but as soon as one thread needs to write the data, everyone except
the writer must get their hands off. ReaderWriterLock manages this feat by using two internal
queues. One queue is for waiting readers, and the other is for waiting writers. Figure 12-2 shows a
high-level block diagram of what the inside of a ReaderWriterLock looks like. In this scenario, four
threads are running in the system, and currently, none of the threads are attempting to access the
data in the lock.

345

346

CHAPTER 12 I THREADING IN C#

Thread Thread
A C
Thread Thread
B D
ReaderWriterLock
Reader Queue
Writer Queue
Lock Owners

Figure 12-2. Unutilized ReaderWriterLock

To access the data, a reader calls AcquireReaderLock. Given the state of the lock shown in
Figure 12-2, the reader will be placed immediately into the Lock Owners category. Notice the use of
plural here, since multiple read lock owners can exist. Things get interesting as soon as one of the
threads attempts to acquire the write lock by calling AcquireWriterLock. In this case, the writer is
placed into the writer queue because readers currently own the lock, as shown in Figure 12-3.

ReaderWriterLock

Reader Queue

Thread
A

Thread
C

Writer Queue
Thread

D

Thread
B

Lock Owners

Figure 12-3. The writer thread is waiting for ReaderWriterLock

CHAPTER 12 " THREADING IN C#

As soon as all of the readers release their lock via a call to ReleaseReaderLock, the writer—in
this case, Thread B—is allowed to enter the Lock Owners region. But, what happens if Thread A
releases its reader lock and then attempts to reacquire the reader lock before the writer has had a
chance to acquire the lock? If Thread A were allowed to reacquire the lock, then any thread waiting
in the writer queue could potentially be starved of any time with the lock. In order to avoid this, any
thread that attempts to require the read lock while a writer is in the queue is placed into the reader
queue, as shown in Figure 12-4.

ReaderWriterLock
Reader Queue
Thread
A
Thread
C
Writer Queue
Thread
Thread D
B
Lock Owners

Figure 12-4. Reader attempting to reacquire lock

Naturally, this scheme gives preference to the writer queue. That makes sense given the fact
that you'd want any readers to get the most up-to-date information. Of course, had the thread that
needs the writer lock called AcquireWriterLock while the ReaderWriterLock was in the state shown
in Figure 12-2, it would have been placed immediately into the Lock Owners category without hav-
ing to go through the writer queue.

The ReaderWriterLock is reentrant. Therefore, a thread can call any one of the lock-acquisition
methods multiple times, as long as it calls the matching release method the same number of times.
Each time the lock is reacquired, an internal lock count is incremented. It should seem obvious that
a single thread cannot own both the reader and the writer lock at the same time, nor can it wait in
both queues in the ReaderWriterLock. It is possible, however, for a thread to upgrade or down-
grade the type of lock it owns. For example, if a thread currently owns a reader lock and calls
UpgradeToWriterLock, its reader lock is released no matter what the lock count is, and then it is
placed into the writer queue. The UpgradeToWriterLock returns an object of type LockCookie.

You should hold on to this object and pass it to DowngradeFromWriterLock when you're done with
the write operation. The ReaderWriterLock uses the cookie to restore the reader lock count on
the object. Even though you can increase the writer lock count once you've acquired it via
UpgradeToWriterLock, your call to DowngradeFromhWriterLock will release the writer lock no matter
what the write lock count is. Therefore, it’s best that you avoid relying on the writer lock count
within an upgraded writer lock.

As with just about every other synchronization object in the .NET Framework, you can provide
a timeout with almost every lock acquisition method. This timeout is given in milliseconds. How-
ever, instead of the methods returning a Boolean to indicate whether the lock was acquired
successfully, these methods throw an exception of type ApplicationException if the timeout expires.
So, if you pass in any timeout value other than Timeout.Infinite to one of these functions, be sure
to make the call inside a try block to catch the potential exception.

347

348

CHAPTER 12 I THREADING IN C#

ReaderWriterLockSlim

.NET 3.5 introduces a new style of reader/writer lock called ReaderWriterLockSlim. It brings a few
enhancements to the table, including better deadlock protection, better efficiency, and disposabil-
ity. It also does not support recursion by default, which adds to its efficiency. If you need recursion,
ReaderWriterLockSlim provides an overloaded constructor that accepts a value from the
LockRecursionPolicy enumeration. Microsoft recommends using ReaderWriterLockSlim rather
than ReaderWriterLock for any new development.

With respect to ReaderhWriterLockSlim, there are four states that the thread can be in:

e Unheld
¢ Read mode
* Upgradeable mode

e Write mode

Unheld means that the thread is not attempting to read or write to the resource at all. If a
thread is in read mode, it has read access to the resource after successfully calling the EnterReadLock
method. Likewise, if a thread is in write mode, it has write access to the thread after successfully
calling EnterWritelock. Just as with ReaderWriterLock, only one thread can be in write mode at a
time and while any thread is in write mode, all threads are blocked from entering read mode. Natu-
rally, a thread attempting to enter write mode is blocked while any threads still remain in read
mode. Once they all exit, the thread waiting for write mode is released. So what is upgradeable
mode?

Upgradeable mode is useful if you have a thread that needs read access to the resource but may
also from time to time need write access to the resource. Without upgradeable mode, the thread
would need to exit read mode and then attempt to enter write mode sequentially. During the time
when it is in the unheld mode, another thread could enter read mode, thus stalling the thread
attempting to gain the write lock. Only one thread at a time may be in upgradeable mode, and it
enters upgradeable mode via a call to EnterUpgradeableReadLock. Upgradeable threads may enter
read mode or write mode recursively, even for ReaderWriterLockSliminstances that were created
with recursion turned off. In essence, upgradeable mode is a more powerful form of read mode that
allows greater efficiency when entering write mode. If a thread attempts to enter upgradeable mode
and another thread is in write mode or threads are in a queue to enter write mode, the thread call-
ing EnterUpgradeableReadlLock will block until the other thread has exited write mode and the
queued threads have entered and exited write mode. This is identical behavior to threads attempt-
ing to enter read mode.

ReaderWriterlLockSlim may throw a LockRecursionException in certain circumstances.

Since ReaderWriterLockSliminstances don't support recursion by default, attempting to call
EnterReadlock, EnterWritelock, or EnterUpgradeableReadLock multiple times from the same thread
will result in one of these exceptions. Additionally, whether the instance supports recursion or not,
a thread that is already in upgradeable mode and attempts to call EnterReadLock or a thread that

is in write mode and attempts to call EnterReadLock could deadlock the system, so a
LockRecursionException is thrown in those cases too.

If you're familiar with the Monitor class, you may recognize the idiom represented in the
method names of ReaderWriterLockSlim. Each time a thread enters a state, it must call one of the
Enter...methods, and each time it leaves that state, it must call one of the corresponding Exit...
methods. Additionally, just like Monitor, ReaderWriterLockSlim provides methods that allow you to
try to enter the lock without potentially blocking forever with methods such as TryEnterReadlLock,
TryEnterUpgradeableReadlLock, and TryEnterWriteLock. Each of the Try... methods allows you to
pass in a timeout value indicating how long you are willing to wait.

CHAPTER 12 " THREADING IN C#

The general guideline when using Monitor is not to use Monitor directly, but rather indirectly
through the C# lock keyword. That’s so that you don’t have to worry about forgetting to call
Monitor.Exit and you don't have to type out a finally block to ensure that Monitor.Exit is called
under all circumstances. Unfortunately, there is no equivalent mechanism available to make it
easier to enter and exit locks using ReaderhWriterLockSlim. Always be careful to call the Exit...
method when you are finished with a lock, and call it from within a finally block so that it gets
called even in the face of exceptional conditions.

Mutex

The Mutex object is a heavier type of lock that you can use to implement mutually exclusive access
to aresource. The .NET Framework supports two types of Mutex implementations. If it’s created
without a name, you get what'’s called a local mutex. But if you create it with a name, the Mutex is
usable across multiple processes and implemented using a Win32 kernel object, which is one of the
heaviest types of lock objects. By that, mean that it is the slowest and carries the most overhead
when used to guard a protected resource from multiple threads. Other lock types, such as the
ReaderWriterlock and the Monitor class, are strictly for use within the confines of a single process.
Therefore, for efficiency, you should only use a Mutex object when you really need to synchronize
execution or access to some resource across multiple processes.

As with other high-level synchronization objects, the Mutex is reentrant. When your thread
needs to acquire the exclusive lock, you call the WaitOne method. As usual, you can pass in a time-
out value expressed in milliseconds when waiting for the Mutex object. The method returns a
Boolean that will be true if the wait is successful, or false if the timeout expired. A thread can call
the WaitOne method as many times as it wants, as long as it matches the calls with the same amount
of ReleaseMutex calls.

Since you can use Mutex objects across multiple processes, each process needs a way to identify
the Mutex. Therefore, you can supply an optional name when you create a Mutex instance. Providing
a name is the easiest way for another process to identify and open the mutex. Since all Mutex names
exist in the global namespace of the entire operating system, it is important to give the mutex a suf-
ficiently unique name so that it won’t collide with Mutex names created by other applications. I
recommend using a name that is based on the string form of a GUID generated by GUIDGEN. exe.

Note | mentioned that the names of kernel objects are global to the entire machine. That statement is not
entirely true if you consider Windows fast user switching and Terminal Services. In those cases, the namespace
that contains the name of these kernel objects is instanced for each logged-in user. For times when you really do
want your name to exist in the global namespace, you can prefix the name with the special string “\Global”. For
more information, reference Microsoft Windows Internals, Fourth Edition: Microsoft Windows Server 2003, Win-
dows XP, and Windows 2000 by Mark E. Russinovich and David A. Solomon (Redmond, WA: Microsoft Press, 2004).

If everything about the Mutex object sounds strikingly familiar to those of you who are native
Win32 developers, that’s because the underlying mechanism is, in fact, the Win32 Mutex object. In
fact, you can get your hands on the actual OS handle via the SafeWaitHandle property inherited
from the WaitHandle base class. I have more to say about the WaitHandle class in the “Win32 Syn-
chronization Objects and WaitHandle” section, where I discuss its pros and cons. It’'s important to
note that since you implement the Mutex using a kernel mutex, you incur a transition to kernel
mode any time you manipulate or wait upon the Mutex. Such transitions are extremely slow and
should be minimized if you're running time-critical code.

349

350

CHAPTER 12 I THREADING IN C#

Tip Avoid using kernel mode objects for synchronization between threads in the same process if at all possible.
Prefer more lightweight mechanisms, such as the Monitor class or the Interlocked class. When effectively syn-
chronizing threads between multiple processes, you have no choice but to use kernel objects. On my current test
machine, a simple test showed that using the Mutex took more than 44 times longer than the Interlocked class
and 34 times longer than the Monitor class.

Semaphore

The .NET Framework supports semaphores via the System.Threading.Semaphore class. They are
used to allow a countable number of threads to acquire a resource simultaneously. Each time a
thread enters the semaphore via WaitOne or any of the other Wait. ..methods, the semaphore count
is decremented. When an owning thread calls Release, the count is incremented. If a thread
attempts to enter the semaphore when the count is zero, it will block until another thread calls
Release. When a thread calls Release, the count is incremented.

Just as with Mutex, when you create a semaphore, you may or may not provide a name by which
other processes may identify it. If you create it without a name, you end up with a local semaphore
that is only useful within the same process. Either way, the underlying implementation uses a
Win32 semaphore kernel object. Therefore, it is a very heavy synchronization object that is slow and
inefficient. You should prefer local semaphores over named semaphore unless you need to synchro-
nize access across multiple processes for security reasons.

Note that a thread can enter a semaphore recursively. However, it must call Release the appro-
priate number of times to restore the availability count on the semaphore. The task of matching the
Wait...method calls and subsequent calls to Release is entirely up to you. There is nothing in place
to keep you from calling Release too many times. If you do, then when another thread later calls
Release, it could attempt to push the count above the allowable limit, at which point it will throw a
SemaphoreFullException. These bugs are very difficult to find because the point of failure is disjoint
from the point of error.

Events

In the .NET Framework, you can use two types to signal events: ManualResetEvent and
AutoResetEvent. As with the Mutex object, these event objects map directly to Win32 event objects.
If you're familiar with using Win32 events, you'll feel right at home with the .NET event objects.
Similar to Mutex objects, working with event objects incurs a slow transition to kernel mode. Both
event types become signaled when someone calls the Set method on an event instance. At that
point, a thread waiting on the event will be released. Threads wait for an event by calling the inher-
ited WaitHandle.WaitOne method, which is the same method you call to wait on a Mutex to become
signaled.

I'was careful in stating that a waiting thread is released when the event becomes signaled. It’s
possible that multiple threads could be released when an event becomes signaled. That, in fact, is
the difference between ManualResetEvent and AutoResetEvent. When a ManualResetEvent becomes
signaled, all threads waiting on it are released. It stays signaled until someone calls its Reset
method. If any thread calls WaitOne while the ManualResetEvent is already signaled, then the wait is
immediately completed successfully. On the other hand, AutoResetEvent objects only release one
waiting thread and then immediately reset to the unsignaled set automatically. You can imagine
that all threads waiting on the AutoResetEvent are waiting in a queue, where only the first thread in
the queue is released when the event becomes signaled. However, even though it’s useful to assume

CHAPTER 12 " THREADING IN C#

that the waiting threads are in a queue, you cannot make any assumptions about which waiting
thread will be released first. AutoResetEvents are also known as sync events based on this behavior.

Using the AutoResetEvent type, you could implement a crude thread pool where several
threads wait on an AutoResetEvent signal to be told that some piece of work is available. When a
new piece of work is added to the work queue, the event is signaled to turn one of the waiting
threads loose. Implementing a thread pool this way is not efficient and comes with its problems. For
example, things become tricky to handle when all threads are busy and work items are pushed into
the queue, especially if only one thread is allowed to complete one work item before going back to
the waiting queue. If all threads are busy and, say, five work items are queued in the meantime, the
event will be signaled but no threads will be waiting. The first thread back into the waiting queue
will be released once it calls WaitOne, but the others will not, even though four more work items
exist in the queue. One solution to this problem is not to allow work items to be queued while all of
the threads are busy. That’s not really a solution, because it defers some of the synchronization logic
to the thread attempting to queue the work item by forcing it to do something appropriate in reac-
tion to a failed attempt to queue a work item. In reality, creating an efficient thread pool is tricky
business, to say the least. Therefore, I recommend you utilize the ThreadPool class before attempt-
ing such a feat. I cover the ThreadPool class in detail in the “Using ThreadPool” section.

Since .NET event objects are based on Win32 event objects, you can use them to synchronize
execution between multiple processes. Along with the Mutex, they are also more inefficient than an
alternative, such as the Monitor class, because of the kernel mode transition involved. However, the
creators of ManualResetEvent and AutoResetEvent did not expose the ability to name the event
objects in their constructors, as they do for the Mutex object. Therefore, if you need to create a
named event, you should use the EventWaitHandle class instead.

Win32 Synchronization Objects and WaitHandle

In the previous two sections, I covered the Mutex, ManualResetEvent, and AutoResetEvent objects.
Each one of these types is derived from WaitHandle, a general mechanism that you can use in the
.NET Framework to manage any type of Win32 synchronization object that you can wait upon. That
includes more than just events and mutexes. No matter how you obtain the Win32 object handle,
you can use a WaitHandle object to manage it. I prefer to use the word manage rather than encapsu-
late, because the WaitHandle class doesn’'t do a great job of encapsulation, nor was it meant to. It’s
simply meant as a wrapper to help you avoid a lot of direct calls to Win32 via the P/Invoke layer
when dealing with OS handles.

Note Take some time to understand when and how to use WaitHandle, because many APIs have yet to be
mapped into the .NET Framework, and many of them may never be.

I've already discussed the WaitOne method used to wait for an object to become signaled. How-
ever, the WaitHandle class has two handy static methods that you can use to wait on multiple
objects. The first is WaitHandle.WaitAny. You pass it an array of WaitHandle objects, and when any
one of the objects becomes signaled, the WaitAny method returns an integer indexing into the array
to the object that became signaled. The other method is WaitHandle.WaitAll, which, as you can
imagine, won't return until all of the objects becomes signaled. Both of these methods have defined
overloads that accept a timeout value. In the case of a call to WaitAny that times out, the return value
will be equal to the WaitHandle.WaitTimeout constant. In the case of a call to WaitAll, a Boolean is
returned, which is either true to indicate that all of the objects became signaled, or false to indi-
cate that the wait timed out.

351

352

CHAPTER 12 I THREADING IN C#

Prior to the existence of the EventWaitHandle class, in order to get a named event, you had to
create the underlying Win2 object and then wrap it with a WaitHandle, as I've done in the following
example:

using System;

using System.Threading;

using System.Runtime.InteropServices;
using System.ComponentModel;

using Microsoft.Win32.SafeHandles;

public class NamedEventCreator
{
[D11Import("KERNEL32.DLL", EntryPoint="CreateEventW",
SetlastError=true)]
private static extern SafeWaitHandle CreateEvent(
IntPtr lpEventAttributes,
bool bManualReset,
bool bInitialState,
string lpName);

public const int INVALID HANDLE VALUE = -1;

public static AutoResetEvent CreateAutoResetEvent(
bool initialState,
string name) {
// Create named event.
SafeWaitHandle rawEvent = CreateEvent(IntPtr.Zero,
false,
false,
name);
if(rawEvent.IsInvalid) {
throw new Win32Exception(
Marshal.GetlastWin32Error());

}

// Create a managed event type based on this handle.
AutoResetEvent autoEvent = new AutoResetEvent(false);

// Must clean up handle currently in autoEvent
// before swapping it with the named one.
autoEvent.SafeWaitHandle = rawEvent;

return autoEvent;

Here I've used the P/Invoke layer to call down into the Win32 CreateEventW function to create a
named event. Several things are worth noting in this example. For instance, I've completely punted
on the handle security, just as the rest of the .NET Framework standard library classes tend to do.
Therefore, the first parameter to CreateEvent is IntPtr.Zero, which is the best way to pass a NULL
pointer to the Win32 error. Notice that you detect the success or failure of the event creation by test-
ing the IsInvalid property on the SafelWaitHandle. When you detect this value, you throw a
Win32Exception type. You then create a new AutoResetEvent to wrap the raw handle just created.
WaitHandle exposes a property named SafeWaitHandle, whereby you can modify the underlying
Win32 handle of any WaitHandle derived type.

CHAPTER 12 " THREADING IN C#

Note You may have noticed the legacy Hand1e property in the documentation. You should avoid this property,
since reassigning it with a new kernel handle won’t close the previous handle, thus resulting in a resource leak
unless you close it yourself. You should use SafeHandle derived types instead. The SafeHandle type also uses
constrained execution regions to guard against resource leaks in the event of an asynchronous exception such as
ThreadAbortException. You can read more about constrained execution regions in Chapter 7.

In the previous example, you can see that | declared the CreateEvent method to return a SafeWaitHandle.
Although it’s not obvious from the documentation of SafeWaitHandle, it has a private default constructor that the
P/Invoke layer is capable of using to create and initialize an instance of this class.

Be sure to check out the rest of the SafeHandle derived types in the Microsoft.Win32.SafeHandles
namespace. Specifically, the .NET 2.0 Framework introduced SafeHandleMinusOneIsInvalid and
SafeHandleZeroOrMinusOneIsInvalid for convenience when defining your own Win32-based SafeWaitHandle
derivatives.

Be aware that the WaitHandle type implements the IDisposable interface. Therefore, you
want to make judicious use of the using keyword in your code whenever using WaitHandle instances
or instances of any of the classes that derive from it, such as Mutex, AutoResetEvent, and
ManualResetEvent.

One last thing that you need to be aware of when using WaitHandle objects and those objects
that derive from the type is that you cannot abort or interrupt managed threads in a timely manner
when they’re blocked via a method to WaitHandle. Since the actual OS thread that is running under
the managed thread is blocked inside the OS—thus outside of the managed execution environ-
ment—it can only be aborted or interrupted as soon as it reenters the managed environment.
Therefore, if you call Abort or Interrupt on one of those threads, the operation will be pended until
the thread completes the wait at the OS level. You want to be cognizant of this when you block using
aWaitHandle object in managed threads.

Using ThreadPool

A thread pool is ideal in a system where small units of work are performed regularly in an asynchro-
nous manner. A good example is a web server or any other kind of server listening for requests on a
port. When a request comes in, a new thread is given the request and processes it. The server
achieves a high level of concurrency and optimal utilization by servicing these requests in multiple
threads. Typically, the slowest operation on a computer is an I/O operation. Storage devices, such as
hard drives, are very slow in comparison to the processor and its ability to access memory. There-
fore, to make optimal use of the system, you want to begin other work items while it’s waiting on an
1/0 operation to complete in another thread. Creating a thread pool to manage such a system is an
amazing task fraught with many details and pitfalls. However, the .NET environment exposes a pre-
built, ready-to-use thread pool via the ThreadPool class.

The ThreadPool class is similar to the Monitor and Interlocked classes in the sense that you
cannot actually create instances of the ThreadPool class. Instead, you use the static methods of the
ThreadPool class to manage the thread pool that each process gets by default in the CLR. In fact, you
don’t even have to worry about creating the thread pool. It gets created when it is first used. If you
have used thread pools in the Win32 world, whether it be via the system thread pool that was intro-
duced in Windows 2000 or via I/O completion ports, you'll notice that the .NET thread pool is the
same beast with a managed interface placed on top of it.

To queue an item to the thread pool, you simply call ThreadPool.QueueUserhWorkItem, passing it
an instance of the WaitCallback delegate. The thread pool gets created the first time your process

353

354

CHAPTER 12 I THREADING IN C#

calls this function. The callback method that is called through the WaitCallback delegate accepts a
reference to System.Object and has a return type of void. The object reference is an optional con-
text object that the caller can supply to an overload of QueueUserWorkItem. If you don’t provide a
context, the context reference will be null. Once the work item is queued, a thread in the thread
pool will execute the callback as soon as it becomes available. Once a work item is queued, it can-
not be removed from the queue except by a thread that will complete the work item. So if you need
to cancel a work item, you must craft a way to let your callback know that it should do nothing
once it gets called.

The thread pool is tuned to keep the machine processing work items in the most efficient way
possible. It uses an algorithm based upon how many CPUs are available in the system to determine
how many threads to create in the pool. However, even once it computes how many threads to cre-
ate, the thread pool may, at times, contain more threads than originally calculated. For example,
suppose the algorithm decides that the thread pool should contain four threads. Then, suppose the
server receives four requests that access a backend database that takes some time. If a fifth request
comes in during this time, no threads will be available to dispatch the work item. What'’s worse, the
four busy threads are just sitting around waiting for the I/0 to complete. In order to keep the system
running at peak performance, the thread pool will actually create another thread when it knows all
of the others are blocking. After the work items have all been completed and the system is in a
steady state again, the thread pool will then kill off any extra threads created like this. Even though
you cannot easily control how many threads are in a thread pool, you can easily control the mini-
mum number of threads that are idle in the pool waiting for work via calls to GetMinThreads and
SetMinThreads.

Turge you to read the details of the System.Threading.ThreadPool static methods in the MSDN
documentation if you plan to deal directly with the thread pool. In reality, it's rare that you'll ever need
to insert work items directly into the thread pool. There is another, more elegant, entry point into the
thread pool via delegates and asynchronous procedure calls, which I cover in the next section.

Asynchronous Method Calls

Although you can manage the work items put into the thread pool directly via the ThreadPool class,
a more popular way to employ the thread pool is via asynchronous delegate calls. When you declare
a delegate, the CLR defines a class for you that derives from System.MulticastDelegate. One of the
methods defined is the Invoke method, which takes exactly the same function signature as the dele-
gate definition. The C# language, of course, offers a syntactical shortcut to calling the Invoke
method. In fact, you cannot explicitly call the Invoke method in C#. But along with Invoke, the CLR
also defines two methods, BeginInvoke and EndInvoke, that are at the heart of the asynchronous
processing pattern used throughout the CLR. This pattern is similar to the IOU pattern introduced
earlier in the chapter.

The basic idea is probably evident from the names of the methods. When you call the
BeginInvoke method on the delegate, the operation is pended to be completed in another thread.
When you call the EndInvoke method, the results of the operation are given back to you. If the oper-
ation has not completed at the time you call EndInvoke, the calling thread blocks until the operation
is complete. Let’s look at a short example that shows the general pattern in use. Suppose you have a
method that computes your taxes for the year, and you want to call it asynchronously because it
could take a reasonably long amount of time to do:
using System;
using System.Threading;

public class EntryPoint

// Declare the delegate for the async call.
private delegate Decimal ComputeTaxesDelegate(int year);

CHAPTER 12 " THREADING IN C#

// The method that computes the taxes.
private static Decimal ComputeTaxes(int year) {
Console.WritelLine("Computing taxes in thread {0}",
Thread.CurrentThread.GetHashCode());

// Here's where the long calculation happens.
Thread.Sleep(6000);

// You owe the man.
return 4356.98M;

}

static void Main() {
// Let's make the asynchronous call by creating
// the delegate and calling it.
ComputeTaxesDelegate work =
new ComputeTaxesDelegate(EntryPoint.ComputeTaxes);
IAsyncResult pendingOp = work.BeginInvoke(2004,
null,
null);

// Do some other useful work.
Thread.Sleep(3000);

// Finish the async call.
Console.Writeline("Waiting for operation to complete.");
Decimal result = work.EndInvoke(pendingOp);

Console.WriteLine("Taxes owed: {0}", result);

The first thing you will notice with the pattern is that the BeginInvoke method’s signature does
not match that of the Invoke method. That’s because you need some way to identify the particular
work item that you just pended with the call to BeginInvoke. Therefore, BeginInvoke returns a refer-
ence to an object that implements the IAsyncResult interface. This object is like a cookie that you
can hold on to so that you can identify the work item in progress. Through the methods on the
IAsyncResult interface, you can check on the status of the operation, such as whether it is com-
pleted. I'll discuss this interface in more detail in a bit, along with the extra two parameters added
onto the end of the BeginInvoke method declaration for which I'm passing null. When the thread
that requested the operation is finally ready for the result, it calls EndInvoke on the delegate. How-
ever, since the method must have a way to identify which asynchronous operation to get the results
for, you must pass in the object that you got back from the BeginInvoke method. In this example,
you’ll notice the call to EndInvoke blocking for some time as the operation completes.

Note If an exception is generated while the delegate’s target code is running asynchronously in the thread
pool, the exception is rethrown when the initiating thread makes a call to EndInvoke.

Part of the beauty of the IOU asynchronous pattern that delegates implement is that the called
code doesn't even need to be aware of the fact that it’s getting called asynchronously. Of course, it'’s
rarely practical to call a method asynchronously when it was never designed to be, if it touches data
in the system that other methods touch without using any synchronization mechanisms. Nonethe-
less, the headache of creating an asynchronous calling infrastructure around the method has been

355

356

CHAPTER 12 I THREADING IN C#

mitigated by the delegate generated by the CLR, along with the per-process thread pool. Moreover,
the initiator of the asynchronous action doesn’t even need to be aware of how the asynchronous
behavior is implemented.

Now let’s look a little closer at the IAsyncResult interface for the object returned from the
BeginInvoke method. The interface declaration looks like the following:

public interface IAsyncResult

{
Object AsyncState { get; }
WaitHandle AsyncWaitHandle { get; }
bool CompletedSynchronously { get; }
bool IsCompleted { get; }

}

In the previous example, I chose to wait for the computation to finish by calling EndInvoke. I
could have instead waited on the WaitHandle returned by the IAsyncResult.AsyncWaitHandle prop-
erty before calling EndInvoke. The end result would have been the same in this case. However, the
fact that the IAsyncResult interface exposes the WaitHandle allows you to have multiple threads in
the system wait for this one action to complete if they needed to.

Two other properties allow you to query whether the operation has completed. The
IsCompleted property simply returns a Boolean representing the fact. You could construct a polling
loop that checks this flag repeatedly. However, that would be much more inefficient than just wait-
ing on the WaitHandle. Nonetheless, it is there if you need it. Another Boolean property is
CompletedSynchronously. The asynchronous processing pattern in the .NET Framework provides for
the option that the call to BeginInvoke could actually choose to process the work synchronously
rather than asynchronously. The CompletedSynchronously property allows you to determine if this
happened. As it is currently implemented, the CLR will never do such a thing when delegates are
called asynchronously, but this could change at any time. However, since it is recommended that
you apply this same asynchronous pattern whenever you design a type that can be called asynchro-
nously, the capability was built into the pattern. For example, suppose you have a class where a
method to process generalized operations synchronously is supported. If one of those operations
simply returns the version number of the class, then you know that operation can be done quickly,
and you may choose to perform it synchronously.

Finally, the AsyncState property of IAsyncResult allows you to attach any type of specific con-
text data to an asynchronous call. This is the last of the extra two parameters added at the end of the
BeginInvoke signature. In my previous example, I passed in null because I didn’t need to use it.
Although I chose to harvest the result of the operation via a call to EndInvoke, I could have chosen to
be notified via a callback. Consider the following modifications to the previous example:
using System;
using System.Threading;

public class EntryPoint
{
// Declare the delegate for the async call.
private delegate Decimal ComputeTaxesDelegate(int year);

// The method that computes the taxes.
private static Decimal ComputeTaxes(int year) {
Console.Writeline("Computing taxes in thread {0}",
Thread.CurrentThread.GetHashCode());

// Here's where the long calculation happens.
Thread.Sleep(6000);

CHAPTER 12 " THREADING IN C#

// You owe the man.
return 4356.98M;
}

private static void TaxesComputed(IAsyncResult ar) {
// Let's get the results now.
ComputeTaxesDelegate work =
(ComputeTaxesDelegate) ar.AsyncState;

Decimal result = work.EndInvoke(ar);
Console.WritelLine("Taxes owed: {0}", result);

}

static void Main() {
// Let's make the asynchronous call by creating
// the delegate and calling it.
ComputeTaxesDelegate work =
new ComputeTaxesDelegate(EntryPoint.ComputeTaxes);
work.BeginInvoke(2004,
new AsyncCallback(
EntryPoint.TaxesComputed),
work);

// Do some other useful work.
Thread.Sleep(3000);

Console.Writeline("Waiting for operation to complete.");
Thread.Sleep(4000);

Now, instead of calling EndInvoke from the thread that called BeginInvoke, I'm requesting that
the thread pool call the TaxesComputed method via an instance of the AsyncCallback delegate that
I passed in as the second-to-last parameter of BeingInvoke. Using a callback to process the result
completes the asynchronous processing pattern by allowing the thread that started the operation
to continue to work without ever having to explicitly wait on the worker thread. Notice that the
TaxesComputed callback method must still call EndInvoke to harvest the results of the asynchro-
nous call. In order to do that, though, it must have an instance of the delegate. That’s where the
IAsyncResult.AsyncState context object comes in handy. In my example, I initialize it to point to
the delegate by passing the delegate as the last parameter to BeginInvoke. The main thread that calls
BeginInvoke has no need for the object returned by the call, since it never actively polls the state of
the operation, nor does it wait explicitly for the operation to complete. The added sleep at the end
of the Main method is there for the sake of the example. Remember, all threads in the thread pool
run as background threads. Therefore, if you don’t wait at this point, the process would exit long
before the operation completes. If you need asynchronous work to occur in a foreground thread, it
is best to create a new class that implements the asynchronous pattern of BeingInvoke/EndInvoke
and use a foreground thread to do the work. Never change the background status of a thread in the
thread pool via the IsBackground property on the current thread. Even if you try, you'll find that it
has no effect.

Note It's important to realize that when your asynchronous code is executing and when the callback is
executing, you are running in an arbitrary thread context. You cannot make any assumptions about which thread is
running your code. In many respects, this technique is similar to driver development on Windows platforms.

357

358

CHAPTER 12 I THREADING IN C#

Using a callback to handle the completion of a work item is very handy when creating a server
process that will handle incoming requests. For example, suppose you have a process that listens on
a specific TCP/IP port for an incoming request. When it receives one, it replies with the requested
information. To achieve high utilization, you definitely want to pend these operations asynchro-
nously. Consider the following example that listens on port 1234 and when it receives anything at
all, it simply replies with “Hello World!”:

using System;

using System.Text;

using System.Threading;
using System.Net;

using System.Net.Sockets;

public class EntryPoint {
private const int CONNECT QUEUE_LENGTH = 4;
private const int LISTEN_PORT = 1234;

static void ListenForRequests() {
Socket listenSock =
new Socket(AddressFamily.InterNetwork,
SocketType.Stream,
ProtocolType.Tcp);
listenSock.Bind(new IPEndPoint(IPAddress.Any,
LISTEN_PORT));
listenSock.Listen(CONNECT QUEUE LENGTH);

while(true) {
using(Socket newConnection = listenSock.Accept()) {
// Send the data.
byte[] msg =
Encoding.UTF8.CetBytes("Hello World!");
newConnection.Send(msg, SocketFlags.None);

}

static void Main() {
// Start the listening thread.
Thread listener = new Thread(
new ThreadStart(
EntryPoint.ListenForRequests));
listener.IsBackground = true;
listener.Start();

Console.Writeline("Press <enter> to quit");
Console.ReadLine();

This example creates an extra thread that simply loops around listening for incoming connec-
tions and servicing them as soon as they come in. The problems with this approach are many. First,
only one thread handles the incoming connections. If the connections are flying in at a rapid rate, it
will quickly become overwhelmed. Think about a web server that could easily see thousands of
requests per second. As it turns out, the Socket class implements the asynchronous calling pattern
of the .NET Framework. Using the pattern, you can make the server a little bit better by servicing
the incoming requests using the thread pool, as follows:

CHAPTER 12 " THREADING IN C#

using System;

using System.Text;

using System.Threading;
using System.Net;

using System.Net.Sockets;

public class EntryPoint {
private const int CONNECT QUEUE_LENGTH = 4;
private const int LISTEN_PORT = 1234;

static void ListenForRequests() {
Socket listenSock =
new Socket(AddressFamily.InterNetwork,
SocketType.Stream,
ProtocolType.Tcp);
listenSock.Bind(new IPEndPoint(IPAddress.Any,
LISTEN_PORT));
listenSock.Listen(CONNECT QUEUE LENGTH);

while(true) {
Socket newConnection = listenSock.Accept();
byte[] msg = Encoding.UTF8.GetBytes("Hello World!");
newConnection.BeginSend(msg,
0, msg.Length,
SocketFlags.None,
null, null);

}

static void Main() {
// Start the listening thread.
Thread listener = new Thread(
new ThreadStart(
EntryPoint.ListenForRequests));
listener.IsBackground = true;
listener.Start();

Console.Writeline("Press <enter> to quit");
Console.ReadLine();

The server is becoming a little more efficient, since it is now sending the data to the incoming
connection from a thread in the thread pool. This code also demonstrates a fire-and-forget strategy
when using the asynchronous pattern. The caller is not interested in the return object that imple-
ments IAsyncResult, nor is it interested in setting a callback method to get called when the work
completes. This fire-and-forget call is a valiant attempt to make the server more efficient. However,
the result is less than satisfactory, since the using statement from the previous incarnation of the
server is gone. The Socket is not closed in a timely manner, and the remote connections are held
open until the GC gets around to finalizing the Socket objects. Therefore, the asynchronous call
needs to include a callback in order to close the connection. It wouldn't make sense for the listening
thread to wait on the EndSend method, as that would put you back in the same inefficiency boat you
were in before.

359

360

CHAPTER 12 I THREADING IN C#

Note When you get an object that implements IAsyncResult back from starting an asynchronous operation,
that object must implement the TAsyncResult.AsyncWaitHandle property to allow users to obtain a handle they
can wait on. In the case of Socket, an instance of OverlappedAsyncResult is returned. That class ultimately
derives from System.Net.LazyAsyncResult. It doesn’t actually create the event to wait on until someone
accesses it via the IAsyncResult.AsyncWaitHandle property. This lazy creation spares the burden of creating a
lock object that goes unused most of the time. Also, it is the responsibility of the OverlappedAsyncResult object
to close the OS handle when it is finished with it.

However, before getting to the callback, consider the listening thread for a moment. All it does
is spin around listening for incoming requests. Wouldn'’t it be more efficient if the server were to use
the thread pool to handle the listening too? Of course it would! So, now, let me present the new and
improved “Hello World!” server that makes full use of the process thread pool:

using System;

using System.Text;

using System.Threading;
using System.Net;

using System.Net.Sockets;

public class EntryPoint {
private const int CONNECT QUEUE LENGTH = 4;
private const int LISTEN_PORT = 1234;
private const int MAX CONNECTION HANDLERS = 4;

private static void HandleConnection(IAsyncResult ar) {
Socket listener = (Socket) ar.AsyncState;

Socket newConnection = listener.EndAccept(ar);
byte[] msg = Encoding.UTF8.GetBytes("Hello World!");
newConnection.BeginSend(msg,
0, msg.Length,
SocketFlags.None,
new AsyncCallback(
EntryPoint.CloseConnection),
newConnection);

// Now queue another accept.

listener.BeginAccept(
new AsyncCallback(EntryPoint.HandleConnection),
listener);

}

static void CloseConnection(IAsyncResult ar) {
Socket theSocket = (Socket) ar.AsyncState;
theSocket.Close();

}

static void Main() {
Socket listenSock =
new Socket(AddressFamily.InterNetwork,
SocketType.Stream,
ProtocolType.Tcp);
listenSock.Bind(new IPEndPoint(IPAddress.Any,
LISTEN PORT));

CHAPTER 12 " THREADING IN C#

listenSock.Listen(CONNECT QUEUE_LENGTH);

// Pend the connection handlers.
for(int i = 0; i < MAX_CONNECTION HANDLERS; ++i) {
listenSock.BeginAccept(
new AsyncCallback(EntryPoint.HandleConnection),
listenSock);

}

Console.Writeline("Press <enter> to quit");
Console.ReadLine();

Now;, the “Hello World” server is making full use of the process thread pool and can handle
incoming client requests with the best concurrency. Incidentally, testing the connection is fairly
simple using the built-in Windows Telnet client. Simply run Telnet from a command prompt or
from the Start » Run dialog, and at the prompt enter the following command to connect to port
1234 on the local machine while the server process is running in another command window:

Microsoft Telnet> open 127.0.0.1 1234

Timers

Yet another entry point into the thread pool is via Timer objects in the System.Threading name-
space. As the name implies, you can arrange for the thread pool to call a delegate at a specific time
as well as at regular intervals. Let’s look at an example of how to use a Timer object:

using System;
using System.Threading;

public class EntryPoint

{
private static void TimerProc(object state) {
Console.WritelLine("The current time is {0} on thread {1}",
DateTime.Now,
Thread.CurrentThread.GetHashCode());
Thread.Sleep(3000);
}
static void Main() {
Console.WritelLine("Press <enter> when finished\n\n");
Timer myTimer =
new Timer(new TimerCallback(EntryPoint.TimerProc),
null,
0,
2000);
Console.ReadLine();
myTimer.Dispose();
}
}

When the timer is created, you must give it a delegate to call at the required time. Therefore,
I've created a TimerCallback delegate that points back to the static TimerProc method. The second

361

362

CHAPTER 12 I THREADING IN C#

parameter to the Timer constructor is an arbitrary state object that you can pass in. When your
timer callback is called, this state object is passed to the timer callback. In my example, I have no
need for a state object, so I just pass null. The last two parameters to the constructor define when
the callback gets called. The second-to-last parameter indicates when the timer should fire for the
first time. In my example, I pass 0, which indicates that it should fire immediately. The last parame-
ter is the period at which the callback should be called. In my example, I've asked for a two-second
period. If you don’t want the timer to be called periodically, pass Timeout.Infinite as the last
parameter. Finally, to shut down the timer, simply call its Dispose method.

In my example, you may wonder why I have the Sleep call inside the TimerProc method. It’s
there just to illustrate a point, and that is that an arbitrary thread calls the TimerProc. Therefore, any
code that executes as a result of your TimerCallback delegate must be thread-safe. In my example,
the first thread in the thread pool to call TimerProc sleeps longer than the next timeout, so the
thread pool calls the TimerProc method two seconds later on another thread, as you can see in the
generated output. You could really cause some strain on the thread pool if you were to notch up the
sleep in the TimerProc.

Note If you've ever used the Timer class in the System.Windows . Forms namespace, you must realize that
it's a completely different beast than the Timer class in the System.Threading namespace. For one, the
Forms.Timer is based upon Win32 Windows messaging—namely, the WM_TIMER message. One handy quality of
the Forms. Timer is that its timer callback is always called on the same thread. However, the only way that hap-
pens in the first place is if the Ul thread that the timer is a part of has an underlying Ul message pump. If the pump
stalls, so do the Forms. Timer callbacks. So, naturally, the Threading.Timer is more powerful in the sense that it
doesn’t suffer from this dependency. However, the drawback is that you must code your Threading. Timer call-
backs in a thread-safe manner.

Summary

In this chapter, I've covered the intricacies of managed threads in the .NET environment. I covered
the various mechanisms in place for managing synchronization between threads, including the
Interlocked, Monitor, AutoResetEvent, ManualResetEvent, WaitHandle-based objects, and so on. I
then described the IOU pattern and how the .NET Framework uses it extensively to get work done
asynchronously. That discussion centered around the CLR’s usage of the ThreadPool based upon the
Windows thread pool implementation.

Threading always adds complexity to applications. However, when used properly, it can make
applications more responsive to user commands and more efficient. Although multithreading
development comes with its pitfalls, the .NET Framework and the CLR mitigate many of those risks
and provide a model that shields you from the intricacies of the operating system—most of the
time. For example, thread pools have always been difficult to implement, even after a common
implementation was added to the Windows operating system. Not only does the .NET environment
provide a nice buffer between your code and the Windows thread pool intricacies, but it also allows
your code to run on other platforms that implement the .NET Framework, such as the Mono run-
time running on Linux. If you understand the details of the threading facilities provided by the .NET
runtime and are familiar with multithreaded synchronization techniques, as covered in this chap-
ter, then you're well on your way to producing effective multithreaded applications.

In the next chapter, I go in search of a C# canonical form for types. I investigate the checklist of
questions you should ask yourself when designing any type using C# for the NET Framework.

